Subscribe to GameFromScratch on YouTube Support GameFromScratch on Patreon Join the GFS Discord Server!
18. July 2014

 

So, as you may be able to tell from the title, I’ve run into a bit of a bug moment.  I am in the process of getting Blender exported models to work with the Three.JS library, as a follow up to this post.  As with all things programming related you are going to run into your share of problems.  This post actually walks through the process of identifying and fixing a bug.

 

The first lesson of bug hunting is always simplify.  Try to replicate the problem in as little code as possible.  What follows below is a blow by blow of  the debugging process.

 

First off, it’s a Three.JS project using TypeScript authored in WebStorm.  All of these points are important to this story.  Not to ruin an upcoming post with too much code, I’ll just give the applicable code.  The problem is in this code… if it’s in code at all that is.  Yeah, that’s a bit of a hint.

 

        var modelLoader = new THREE.JSONLoader();

        modelLoader.load("dice.jsm", function(geometry,materials){
            var mesh = new THREE.SkinnedMesh(geometry,new THREE.MeshFaceMaterial(
                       materials));
            mesh.position. x = mesh.position.y = mesh.position.z = 0;
            this.scene.add(mesh);
        });

 

Anyways, I started off by trying to load this model:

image

Exported from Blender to Three.JS JSON format.

 

When I run the code however I get the following in WebStorm:

image

 

Unexpected token /?

 

Hmmm, looks like something went wrong in the export process.  This is never a fun thing to debug, as the output of the above model is a JSON file 1.5MB in size.

 

So, it’s time to simplify.  I need a model with a texture, nothing more.  Let’s make something about as basic as possible.  So I hack together a quick textured model in Blender and export it.  This is the new model:

image

 

Ok, that is definitely simpler.  Now when I run it I get the exact same error.  Ok, this file should be a hell of a lot easier to debug.  Let’s take a look at the generated JSON file.  Oh, top type… right click the js file and tell Webstorm to treat it as plain text, otherwise it will clobber your CPU trying to parse the javascript!

 

 

{

	"metadata" :
	{
		"formatVersion" : 3.1,
		"generatedBy"   : "Blender 2.7 Exporter",
		"vertices"      : 8,
		"faces"         : 6,
		"normals"       : 2,
		"colors"        : 0,
		"uvs"           : [24],
		"materials"     : 1,
		"morphTargets"  : 0,
		"bones"         : 0
	},

	"scale" : 1.000000,

	"materials" : [	{
		"DbgColor" : 15658734,
		"DbgIndex" : 0,
		"DbgName" : "Material",
		"blending" : "NormalBlending",
		"colorAmbient" : [0.6400000190734865, 0.6400000190734865, 0.6400000190734865],
		"colorDiffuse" : [0.6400000190734865, 0.6400000190734865, 0.6400000190734865],
		"colorEmissive" : [0.0, 0.0, 0.0],
		"colorSpecular" : [0.5, 0.5, 0.5],
		"depthTest" : true,
		"depthWrite" : true,
		"mapDiffuse" : "crate.jpg",
		"mapDiffuseWrap" : ["repeat", "repeat"],
		"shading" : "Lambert",
		"specularCoef" : 50,
		"transparency" : 1.0,
		"transparent" : false,
		"vertexColors" : false
	}],

	"vertices" : [1,-1,0,1,0,1,-1,0,0,0,-1,0,1,0,0,0,1,1,-1,1,0,0,0,0],

	"morphTargets" : [],

	"normals" : [0.577349,0.577349,0.577349,0.577349,0.577349,-0.577349],

	"colors" : [],

	"uvs" : [[0.988679,0.99767,0.988677,0.016243,0.007251,0.016244,0.007252,0.
	997671,0.989755,0.017099,0.989755,0.998526,0.008328,0.998526,0.008328,0.017099,
	0.990714,0.989755,0.009287,0.989755,0.009286,0.008328,0.990713,0.008328,0.
	000516,0.993662,0.981943,0.993661,0.981942,0.012235,0.000516,0.012235,0.987766,
	0.997568,0.987766,0.016141,0.006339,0.016141,0.006339,0.997568,0.986807,0.
	986807,0.986807,0.005381,0.00538,0.00538,0.00538,0.986807]],

	"faces" : [43,0,3,2,1,0,0,1,2,3,0,0,1,1,43,4,7,6,5,0,4,5,6,7,0,0,1,1,43,0,4,5,1,
	0,8,9,10,11,0,0,1,1,43,1,2,6,5,0,12,13,14,15,1,1,1,1,43,2,3,7,6,0,16,17,18,19,1,
	0,0,1,43,3,0,4,7,0,20,21,22,23,0,0,0,0],

	"bones" : [],

	"skinIndices" : [],

	"skinWeights" : [],

  "animations" : []


}

 

Well, first obvious thing is to look for an offending / in this code.

Hmmm… there is none.  Well we wouldn’t make the big bucks if this was easy now would we?

 

Let’s go back to our error for a second:

image

 

Well, other than the fact we know we have a / where we shouldn’t, we also have the line of code that is going all explodey.  Let’s start there.  This is one of those things that makes WebStorm so freaking cool.  Just click the link “three.js:11960” and it will automatically download that script file and go to that position.  Let’s take a look at the resulting code:

image

 

Ok, that’s some pretty straight forward code.  Basically it’s a XML response function handler.  As we can tell from the above code, the callback executed all nice and dandy.  As you can see on line 11960 I’ve set a breakpoint to pause execution before our exception, let’s see if that gives us any insight.  If you don’t know about breakpoints and debugging, drop everything and learn.  You will literally become a better programmer overnight.

 

So… to the debugger!  Let’s see what the value of responseText is:

 

By hovering over it, everything looks fine, seems to match the file we are expecting:

image

 

That said, let’s take a look at the whole thing.  Now we are going to use a feature called “Evaluate Expression”.  Again, if you don’t know what this is, drop everything and go learn.  I really need to write a debugging tutorial…. 

 

image

 

Copy the value and paste it into your editor of choice.  Then scroll to the very bottom:

image

 

Oh son of a bi….

 

That my friend, is our bug.  See, Webstorm has the ability to generate something called a SourceMap, which helps the debugger translate your running code to the code you created, especially useful if you, like me, are working in a JavaScript generating language like TypeScript.  As you can see, sometimes this is not ideal however.  Basically when run, Webstorm was appending a source map to the bottom of our js file, rendering into invalid JSON and causing the parser to puke.

 

There are two immediate solutions to this problem.  First, we can disable source map generation.  This unfortunately is a project wide setting as far as I can tell, and I rather like the ability to debug.  The easier solution is to change it from a .js file to something different.  However, once deployed to a server this can have unintended side effects.  For example, IIS will not, by default, serve files without a registered mime type.

 

Oh, and for the astute, once I got past the problem be renaming the file extension, I did in fact discover two errors in my code.  The proper TypeScript code is;

 

        var modelLoader = new THREE.JSONLoader();

        modelLoader.load("dice.jsm", (geometry,materials) => {
            var mesh = new THREE.SkinnedMesh(geometry,new THREE.MeshFaceMaterial(
                       materials));
            mesh.position.x = 0; mesh.position.y = mesh.position.z = 0;
            this.scene.add(mesh);
        });

 

Why is an exercise for the reader. :)

Programming


15. July 2014

 

There was recently a flood of Three.js books on Safari lately including Essential Three.js and Game Development with Three.jsThree.js is a JavaScript based 3D library using WebGL ( and not, if not available ).  More importantly, it’s just really fun to play with!  Something about working in full 3D in a scripting language is just really satisfying.  I’ve only just been playing and really don’t have a clue what I’m doing, but I figured I would share my results.  As I have been on a TypeScript kick lately, I’ve been writing in TypeScript instead of plain JavaScript, but frankly the differences are fairly minimal.  You can get the TypeScript definitions on DefinatelyTyped.

 

I think I should make something perfectly clear… I have NO idea what I am doing, I am simply playing around.  This isn’t a WebGL tutorial by any definition of the word, just me having skim read a couple of books and played around with a new technology, nothing more.  So if you look at some code and thing “damn that looks hacky” or “isn’t that a really stupid thing to do?” the answer is probably yes! :)

 

So, disclaimer given, let’s jump right in. 

 

Since this is a web app, we need a host HTML page.  So, here is ours:

<!DOCTYPE html>

<html lang="en">
<head>
    <meta charset="utf-8" />
    <title>ThreeJS Test</title>
    <script src="http://cdnjs.cloudflare.com/ajax/libs/three.js/r67/three.js"></script>
    <script src="app.js"></script>
</head>
<body>
<h1>ThreeJS Test</h1>

<div id="content" style="width:500px;height:500px"></div>
</body>
</html>

 

Nothing really shocking here.  We include three.js using the cloudflare content delivery network.  If you wanted of course you could download the library locally and deploy it from your own servers.  I assume you don’t have servers situated around the world, so a CDN will generally thrash your own servers performance.  Next we include app.js, the generated output from our typescript application.  In the actual HTML we create a 500x500 DIV named content, for predictably enough, our content!

 

Now lets take a look at a super simple example app, app.ts:

///<reference path="./three.d.ts"/>

class ThreeJSTest {
    renderer: THREE.WebGLRenderer;
    constructor(){
        this.renderer = new THREE.WebGLRenderer({ alpha: true });
        this.renderer.setSize(500,500);
        this.renderer.setClearColor(0xFF0000,1);
        document.getElementById('content').appendChild(this.renderer.domElement);
    }

    start() {
        this.renderer.clear();
    }
}

window.onload = () => {
    var three = new ThreeJSTest();
    three.start();
};

 

Here in the constructor we create a WebGLRenderer, size it, set the background color to red ( using HTML format hex color coding ) then wire the renderer to the content div.

 

When you run it you should see:

image

 

Cool, our first Three.js application.  Now let’s do something 3D!  Let’s start by creating a camera and rendering a built in 3D object in wireframe. It's commented heavily, so I wont be explaining what is going on. If you are curious why I did something, leave a comment.

///<reference path="./three.d.ts"/>

class ThreeJSTest {
    renderer: THREE.WebGLRenderer;
    scene: THREE.Scene;
    camera: THREE.Camera;

    constructor(){
        // Create the renderer, in this case using WebGL, we want an alpha channel
        this.renderer = new THREE.WebGLRenderer({ alpha: true });

        // Set dimensions to 500x500 and background color to white
        this.renderer.setSize(500,500);
        this.renderer.setClearColor(0xFFFFFF,1);

        // Bind the renderer to the HTML, parenting it to our 'content' DIV
        document.getElementById('content').appendChild(this.renderer.domElement);

        // Create a Scene
        this.scene = new THREE.Scene();

        // And a camera.  Set Field of View, Near and Far clipping planes
        this.camera = new THREE.PerspectiveCamera(45
            , 1
            , 0.1, 1000);

        // Position is -20 along the Z axis and look at the origin
        this.camera.position = new THREE.Vector3(0,0,-20);
        this.camera.lookAt(new THREE.Vector3(0,0,0));

        // Createa the geometry for a sphere with a radius of 5
        var sphereGeometry = new THREE.SphereGeometry(5);

        // Create a wireframe material that's blueish
        var sphereMaterial = new THREE.MeshBasicMaterial(
            {color: 0x7777ff, wireframe: true});

        // Now make a THREE.Mesh using the geometry and a shader
        var sphere = new THREE.Mesh(sphereGeometry,sphereMaterial);

        // And put it at the origin
        sphere.position = new THREE.Vector3(0,0,0);

        // Add it to the scene and render the scene using the Scene and Camera objects
        this.scene.add(sphere);
        this.renderer.render(this.scene,this.camera);
    }

    start() {
        // Well, arent I a bit pointless?
    }
}

window.onload = () => {
    var three = new ThreeJSTest();
    three.start();
};

 

And when run it we get:

 

image

 

Cool!  Now time for some texturing ( and as a result, lighting ).

///<reference path="./three.d.ts"/>

class ThreeJSTest {
    renderer:THREE.WebGLRenderer;
    scene:THREE.Scene;
    camera:THREE.Camera;

    constructor() {
        // Create the renderer, in this case using WebGL, we want an alpha channel
        this.renderer = new THREE.WebGLRenderer({ alpha: true });

        // Set dimensions to 500x500 and background color to white
        this.renderer.setSize(500, 500);
        this.renderer.setClearColor(0xFFFFFF, 1);

        // Bind the renderer to the HTML, parenting it to our 'content' DIV
        document.getElementById('content').appendChild(this.renderer.domElement);

        // Create a Scene
        this.scene = new THREE.Scene();

        // And a camera.  Set Field of View, Near and Far clipping planes
        this.camera = new THREE.PerspectiveCamera(45
            , 1
            , 0.1, 1000);

        // Position is -20 along the Z axis and look at the origin
        this.camera.position = new THREE.Vector3(0, 0, -20);
        this.camera.lookAt(new THREE.Vector3(0, 0, 0));

        // Createa the geometry for a sphere with a radius of 5
        // This time we cranked up the number of sections horizontal and vertical to make a 
higher resolution globe
        var sphereGeometry = new THREE.SphereGeometry(5, 20, 20);

        // This time we create a Phong shader material and provide a texture.
        var sphereMaterial = new THREE.MeshPhongMaterial(
            {
                map: THREE.ImageUtils.loadTexture("earth_sphere.jpg")
            }
        );

        // Now make a THREE.Mesh using the geometry and a shader
        var sphere = new THREE.Mesh(sphereGeometry, sphereMaterial);

        // And put it at the origin
        sphere.position = new THREE.Vector3(0, 0, 0);

        // Add it to the scene and render the scene using the Scene and Camera objects
        this.scene.add(sphere);

        // We need some light so our texture will show, ad an ambient light to the scene
        this.scene.add(new THREE.AmbientLight(new THREE.Color(0.9,0.9,0.9).getHex()));
        this.renderer.render(this.scene, this.camera);
    }

    render() {
        // Each frame we want to render the scene again
        // Use typescript Arrow notation to retain the thisocity passing render to requestAnimationFrame
        // It's possible I invented the word thisocity.
        requestAnimationFrame(() => this.render());
        this.renderer.render(this.scene, this.camera);
    }

    start() {
        // Not so pointless now!
        this.render();
    }
}

window.onload = () => {
    var three = new ThreeJSTest();
    three.start();
};

Bet you can't guess what texture I went with!

 

image

 

So apparently textured 3D objects are nothing difficult.

 

This is getting pretty long, so I’ll cut it off here.  Next up I’m going to look at getting a Blender object rendering in Three.JS.

Programming


24. June 2014

 

 

In the previous part we looked at handling graphics in Phaser, now we are going to look at handling input.  This part is going to be code heavy and fairly light on description.  Look to the code comments for more details.

As is pretty common with game frameworks, there are a number of different ways to handle input and a number of different devices, so lets get started!

 

Using the cursor keys and polling for input

 

/// <reference path="phaser.d.ts"/>

// Demonstrate the use of arrow keys in a Phaser app
// This application demonstrates creation of a Cursor and polling for input
class SimpleGame {
    game: Phaser.Game;
    jetSprite: Phaser.Sprite;
    cursors: Phaser.CursorKeys;

    constructor() {
        this.game = new Phaser.Game(640, 480, Phaser.AUTO, 'content', {
            create: this.create, preload: this.preload,
        update: this.update});
    }

    preload() {
        var loader = this.game.load.image("jet", "jet.png");
    }

    create() {
        var image = <Phaser.Image>this.game.cache.getImage("jet");
        this.jetSprite = this.game.add.sprite(
            this.game.width / 2 - image.width / 2,
            this.game.height / 2 - image.height / 2,
            "jet");

        // create the cursor key object
        this.cursors = this.game.input.keyboard.createCursorKeys();
    }

    update() {
        // Update input state
        this.game.input.update();

        // Check each of the arrow keys and move accordingly
        // If the Ctrl Key + Left or Right arrow are pressed, move at a greater rate
        if (this.cursors.down.isDown)
            this.jetSprite.position.y++;
        if (this.cursors.up.isDown)
            this.jetSprite.position.y--;
        if (this.cursors.left.isDown) {
            if (this.cursors.left.ctrlKey)
                this.jetSprite.position.x -= 5;
            else
                this.jetSprite.position.x--;
        }
        if (this.cursors.right.isDown) {
            if (this.cursors.right.ctrlKey)
                this.jetSprite.position.x += 5;
            else
                this.jetSprite.position.x++;
        }
    }
}

window.onload = () => {
    var game = new SimpleGame();
};

 

When you run this code the familiar jet sprite is rendered centered to the canvas. You can then use the arrow keys to move the fighter around.  As you can see, in the state for each key is information on modifier keys like Control and Alt.  Polling for input ( that is, checking status each call to update ) is a valid way of controlling a game, but sometimes you instead want to respond to input as it arrives.  Let’s look now at an example of event driven keyboard handling:

 

/// <reference path="phaser.d.ts"/>

// Demonstrate keyboard input handling via callback
class SimpleGame {
    game: Phaser.Game;
    jetSprite: Phaser.Sprite;
    W: Phaser.Key;
    A: Phaser.Key;
    S: Phaser.Key;
    D: Phaser.Key;

    constructor() {
        this.game = new Phaser.Game(640, 480, Phaser.AUTO, 'content', {
            create: this.create, preload: this.preload
        });
    }

    preload() {
        var loader = this.game.load.image("jet", "jet.png");
    }

    moveLeft() {
        this.jetSprite.position.add(-1, 0);
    }
    moveRight() {
        this.jetSprite.position.add(1, 0);
    }
    moveUp(e: KeyboardEvent) {
        // As you can see the event handler is passed an optional event KeyboardEvent
        // This contains additional information about the key, including the Control
        // key status.
        // Basically if the control key is held, we move up or down by 5 instead of 1
        if (e.ctrlKey) 
            this.jetSprite.position.add(0, -5);
        else
            this.jetSprite.position.add(0, -1);
    }
    moveDown(e: KeyboardEvent) {
        if (e.ctrlKey)
            this.jetSprite.position.add(0, 1);
        else
            this.jetSprite.position.add(0, 1);
    }

    create() {
        var image = <Phaser.Image>this.game.cache.getImage("jet");
        this.jetSprite = this.game.add.sprite(
            this.game.width / 2 - image.width / 2,
            this.game.height / 2 - image.height / 2,
            "jet");

        // Create a key for each WASD key
        this.W = this.game.input.keyboard.addKey(Phaser.Keyboard.W);
        this.A = this.game.input.keyboard.addKey(Phaser.Keyboard.A);
        this.S = this.game.input.keyboard.addKey(Phaser.Keyboard.S);
        this.D = this.game.input.keyboard.addKey(Phaser.Keyboard.D);

        // Since we are allowing the combination of CTRL+W, which is a shortcut for close window
        // we need to trap all handling of the W key and make sure it doesnt get handled by 
        // the browser.  
        // Unfortunately you can no longer capture the CTRL+W key combination in Google Chrome
        // except in "Application Mode" because apparently Google thought an unstoppable un prompted
        // key combo of death was a good idea...
        this.game.input.keyboard.addKeyCapture(Phaser.Keyboard.W);

        // Wire up an event handler for each K.  The handler is a Phaser.Signal attached to the Key Object
        this.W.onDown.add(SimpleGame.prototype.moveUp, this);
        this.A.onDown.add(SimpleGame.prototype.moveLeft, this);
        this.S.onDown.add(SimpleGame.prototype.moveDown, this);
        this.D.onDown.add(SimpleGame.prototype.moveRight, this);
    }
}

window.onload = () => {
    var game = new SimpleGame();
};

 

As you can see, you can also create Phaser.Key objects and attach onDown event handlers ( technically Signals ) to each.  Of course you can reuse the same handler for multiple keys.  A couple key things to notice here… unlike the previous example, holding down a key will not cause continuous movement.  You must press and release the key over and over.  If you want constant movement, either use a polling method, use and action instead of updating each frame, or add some logic to move until the key is released.

 

The other thing to be aware of here is the use of the CTRL+W combination and addKeyCapture().  addKeyCapture() allows you to prevent the event from bubbling up, so once you’ve handled the key combination, it’s done.  Otherwise it would keep being passed up, either to other objects in the scene, or to the browser itself.  You can also use addKeyCapture to prevent default web behavior, such as scrolling when SPACE is pressed.

 

Programming


9. June 2014

 

 

I’ve done a number of these walk through type tutorials using many different languages/libraries and there is one common traffic trend.  People LOVE reading about graphics.  In every single example the post I do about graphics always seems to draw the most traffic.  I guess we just love drawing stuff on screen.  Now for the good part, Phaser is good at it and makes it really all quite easy.

 

Loading and adding a sprite

 

Back in the previous post I actually jumped the gun a bit and showed preloading and rendering sprites.  Since so many people jump ahead straight to the graphics post, I’ll review the process.

 

/// <reference path="phaser.d.ts"/>
class SimpleGame {
    game: Phaser.Game;
    titleScreenImage: Phaser.Sprite;

    constructor() {
        this.game = new Phaser.Game(800, 600, Phaser.AUTO, 'content', { create: this.create, preload: this.preload });
    }
    preload() {
        this.game.load.image("title", "TitleScreen.png");
    }
    create() {
        this.titleScreenImage = this.game.add.sprite(0, 0, "title");
    }
}

window.onload = () => {
    var game = new SimpleGame();
};

 

The key concepts to be aware of here is preloading assets using game.load methods, where you pass in the filename as well as a unique string key that you will use to access the asset.  Then in create you can see this in action, where we add a sprite to the game using game.add.sprite, using the key “title” to access it.  In this case our “sprite” was a full screen image.  Now let’s look at how you can work with a sprite, this time using a slightly smaller image.

Working with sprites

 

For this section I am going to work with this sprite ( created in this tutorial series ):

jet

 

Add it to your project’s root directory.  In my case I’ve called it jet.png.  Using the above code, simply replace “TitleScreen.png” with “jet.png” and “title” with “jet” and you should see:

 

image

 

 

As you can see, our sprite is drawn at the top left corner of the screen.  That is because the value (0,0) in Phaser refers to the top left corner of the screen by default.  Let’s instead center our sprite using the following code:

 

/// <reference path="phaser.d.ts"/>
class SimpleGame {
    game: Phaser.Game;
    jetSprite: Phaser.Sprite;

    constructor() {
        this.game = new Phaser.Game(800, 600, Phaser.AUTO, 'content', { create: this.create, preload: this.preload });
    }
    preload() {
        var loader = this.game.load.image("jet", "jet.png");
    }
    create() {
        var image = <Phaser.Image>this.game.cache.getImage("jet");
        
        this.jetSprite = this.game.add.sprite(
            this.game.width / 2 - image.width / 2,
            this.game.height / 2 - image.height / 2,
            "jet");
    }
}

window.onload = () => {
    var game = new SimpleGame();
};

 

Run this code and:

image

 

We are now nicely centered, both to the window and sprite.

We have one major challenge with centering the image.  Until the sprite is created, it doesn’t have a width or height.  However, when you create the sprite you can set it’s position.  Of course it would be possible to create then move the sprite but that is hackish and could have unintended graphical problems.  Instead we can get the image we loaded using this.game.cache.getImage() then access the images dimensions.  One line of code might stand out for you here:

 

var image = <Phaser.Image>this.game.cache.getImage("jet");

 

This is TypeScript’s way of typecasting.  If you’ve worked in Java, C# or C++ you’ve no doubt encountered typescasting.  If your experience was mostly in JavaScript ( a mostly typeless language ), this might be new to you.  Basically what you are saying is “we promise the value returned by getImage() is of the type <Phaser.Image>, so make image a Phaser.Image”.  If you try to access a value or method in image that doesn’t exist in Phaser.Image, TypeScript will give you an error.

 

Positioning items in Phaser

 

When using a sprite, by default, transformations happen relative to the top left corner of the sprite.  This is why we had to subtract half to the width and height of the sprite when positioning it in the center of the screen.  Otherwise the top left corner of the sprite would be centered to the screen like this:

image

 

Sometimes however you would rather transform the sprite relative to a different point, commonly the very middle or occasionally the bottom left corner.   Fortunately there is an option for this, the anchor.  The anchor tells Phaser where to draw your Sprite relative to.  Here we set the anchor to the center of the sprite then draw it at (0,0) like so:

 

    create() {
        var image = <Phaser.Image>this.game.cache.getImage("jet");
        
        this.jetSprite = this.game.add.sprite(
            this.game.width / 2 - image.width / 2,
            this.game.height / 2 - image.height / 2,
            "jet");

        this.jetSprite.anchor.set(0.5,0.0)
        this.jetSprite.position.x = this.jetSprite.position.y = 0.0;
    }

 

And the result:

image

As you can see, draw calls for the sprite now position relative to it’s center.  Positioning sprites relative to their center is incredibly handy when it comes to rotation, while anchoring at the bottom is useful for platformers where you are aligning the sprite’s feet to the ground.  What you chose is entirely up to you.  The values passed in to anchor might be a bit confusing, as they are normalized, meaning they go from 0 to 1.  The values are all relative to the sprite itself, while (0,0) is the top left corner of the sprite, while (1,1) is the bottom right corner.  (1,0) would be the bottom left, while (0,1) would be the top right.

 

There is one important thing to be aware of here.  Anchor works relative to the source image, not the sprite itself.  Therefore if you intend to scale your sprites, instead of using anchor, you are going to want to use pivot instead.  (Until recently pivot was broken, but it appears to work now).  Pivot sets the center point of the sprite, not the image that composes the sprite.  Setting the pivot looks like this:

        this.jetSprite.pivot.x = this.jetSprite.width / 2;
        this.jetSprite.pivot.y = this.jetSprite.height / 2;

 

Again, you don’t have to set the anchor at all, but it can be useful.  Unlike anchor, pivot uses relative pixel coordinates within the sprite itself.  Therefore the mid-point is at (width/2,height/2).  Once again, (0,0) is the top left corner.

 

Simple Graphics

 

Sometimes you just want to draw primitive graphics on screen… lines, circles, boxes, that kind of stuff.  Fortunately Phaser has that built in as well in the form of the Graphics object.

 

/// <reference path="phaser.d.ts"/>
class SimpleGame {
    game: Phaser.Game;
    jetSprite: Phaser.Sprite;

    constructor() {
        this.game = new Phaser.Game(800, 600, Phaser.AUTO, 'content', { create: this.create, preload: this.preload });
    }
    preload() {
        var loader = this.game.load.image("jet", "jet.png");
    }
    create() {
        // Add a graphics object to our game
        var graphics = this.game.add.graphics(0, 0);

        // Create an array to hold the points that make up our triangle
        var points: Phaser.Point[] = [];
        // Add 4 Point objects to it
        points.push(new Phaser.Point());
        points.push(new Phaser.Point());
        points.push(new Phaser.Point());

        // Position one top left, top right and botto mmiddle
        points[0].x = 0;
        points[0].y = 0;

        points[1].x = this.game.width;
        points[1].y = 0;

        points[2].x = this.game.width/2;
        points[2].y = this.game.height;

        // set fill color to red in HEX form.  The following is equal to 256 red, 0 green and 0 blue.  
        // Do at 50 % alpha, meaning half transparent
        graphics.beginFill(0xff0000, 0.5);
        
        // Finally draw the triangle, false indicates not to cull ( remove unseen values )
        graphics.drawTriangle(points, false);

        // Now change colour to green and 100% opacity/alpha
        graphics.beginFill(0x00ff00, 1.0);

        // Draw circle about screen's center, with 200 pixels radius
        graphics.drawCircle(this.game.width / 2, this.game.height / 2, 200);
        
    }
}

window.onload = () => {
    var game = new SimpleGame();
};

 

The code is pretty heavily commented so should be self explanatory.  When you run it you should see:

image

 

 

A look behind the scenes

 

Let’s take a quick look at how graphics drawing works in Phaser.  That involves going back to this line:

this.game = new Phaser.Game(800, 600, Phaser.AUTO, 'content', {});

Here you are passing in a lot of important information.  First (and second) are the resolution of your game.  Next is the type of Renderer that Phaser should use.  We mentioned this briefly in the prior tutorial.  You have the option of WEBGL or Canvas rendering ( or headless, which means no rendering at all and is used for server side programming ).  Which you chose depends heavily on the device you are supporting.  For example, currently no iOS devices support WebGL and only the most recent version of Internet Explorer work.  By selecting AUTO you let Phaser decide based on the device you are running on.  Finally ‘content’ is the HTML ID of the DIV to render our game in.

 

You may notice scattered throughout Phaser’s code/documentation are references to PIXI.  Pixi.js is a popular WebGL 2D renderer that is able to fallback on Canvas rendering when WebGL is unavailable.  Pixi is the renderer that Phaser uses, so you will occasionally see Pixi classes inside Phaser code.

 

There is one final thing to cover about graphics before moving on, full screen and handling multiple resolutions.

 

Going Full Screen

 

Now let’s take a look at an application that can go full screen:

 

/// <reference path="phaser.d.ts"/>
class SimpleGame {
    game: Phaser.Game;
    jetSprite: Phaser.Sprite;

    constructor() {
        this.game = new Phaser.Game(640, 480, Phaser.AUTO, 'content', { create: this.create, preload: this.preload });
    }
    preload() {
        var loader = this.game.load.image("jet", "jet.png");
    }

    // This function is called when a full screen request comes in
    onGoFullScreen() {
        // tell Phaser how you want it to handle scaling when you go full screen
        this.game.scale.fullScreenScaleMode = Phaser.ScaleManager.EXACT_FIT;
        // and this causes it to actually do it
        this.game.scale.refresh();
    }
    goFullScreen() {

    }
    create() {
        var image = <Phaser.Image>this.game.cache.getImage("jet");

        // Draw the jet image centered to the screen
        this.jetSprite = this.game.add.sprite(
            this.game.width / 2 - image.width / 2,
            this.game.height / 2 - image.height / 2,
            "jet");

        // Set background to white to make effect clearer
        this.game.stage.backgroundColor = 0xffffff;

        // Add a function that will get called when the game goes fullscreen
        this.game.scale.enterFullScreen.add(SimpleGame.prototype.onGoFullScreen, this);

        // Now add a function that will get called when user taps screen.
        // Function declared inline using arrow (=>) function expression
        // Simply calls startFullScreen().  True specifies you want anti aliasing.
        // Unfortunately you can only make full screen requests in desktop browsers in event handlers
        this.game.input.onTap.add(
            () => { this.game.scale.startFullScreen(true); },
            this);
    }

}

window.onload = () => {
    var game = new SimpleGame();
};

 

The comments cover most of what’s going on, but I thought I would touch on a couple things in the above example.  First you cant simply request to go fullScreen in Desktop browsers for security reasons.  This means your game can’t simply start in full screen, you need to make the call to startFullScreen() inside an event handler.  Most commonly this will be in the form of a “Click here for FullScreen” button or link.

 

Next is the ()=> syntax, known in TypeScript as an arrow function expression (if you’ve used C#, this syntax is going to look awfully familiar to you!) and is something that should be coming in the next JavaScript version (ECMAScript 6).  It is simply a more compact form of a function expression ( no need for the word function ) that is automatically scoped to “this”.  You could have created a function like onGoFullScreen like we did for enterFullScreen.  ( Coincidentally we could have also handled enterFullScreen using an arrow function.

 

The last thing to look at is the scale mode.  In this example we used Phaser.ScaleManager.EXACT_FIT, which scales the scene up to match your resolution.  There are two other options, SHOW_ALL and NO_SCALE.  Here is the result of running the code above using each setting:

 

Phaser.ScaleManager.EXACT_FIT

EXACT_FIT

 

Phaser.ScaleManager.NO_SCALE

NO_SCALE

 

Phaser.ScaleManager.SHOW_ALL 

SHOW_ALL

 

If you have an HDTV, you can think about them this way.  EXACT_FIT is the same as Stretch mode.  It scales the scene to use as much of the screen as possible, but can result in some distortion.  NO_SCALE does nothing, it simply shows the scene un-altered, centered to the screen.  SHOW_ALL is about the equivalent of Letterbox.  Basically it fits as well as it can while maintaining the aspect ration of your original scene. 

 

Don’t worry, that’s not it for graphics, we have all kinds of things coming up…  spritesheets, effects, particles, animation, etc…  That’s just it for the foundations.

 

Programming


2. June 2014

 

So far in working with TypeScript I’ve exclusively used Visual Studio and that hasn’t been entirely trouble free.  There are many people out there that wont have access to Visual Studio ( working on Mac or Linux perhaps? ) or simply wont want to.  Thankfully there is a great alternative, WebStorm.  Granted WebStorm isn’t free, although there is a 30 day trial.  It is however a very well spent $50 if you are working in JavaScript ( or TypeScript ).  This post looks at working in TypeScript with Webstorm.

 

First step of course it download and install WebStorm.  The trial is fully functioning by the way.

During the install, if you havent already, you will be prompted to install Java 6.  Don’t worry, WebStorm takes care of the process for you.

Next you need to install Node.  Node.js is a JavaScript environment that works outside of the browser.  I’ve worked with Node a number of times on this site.  Install Node using the default settings.

Now open up a terminal/command prompt and type npm install –g typescript

The results should look like:

image

 

This installed the TypeScript language.  We are now ready to go.

 

When you open a project with a typescript file a file watcher should kick in automatically.  If not, its easy enough to define one.

Select File->Settings.  ( This menu has a different location on MacOS I believe )

On the left hand side, locate File Watchers:

image

 

On the right hand side, if none exist for TypeScript, click plus.  If one exists, make sure its checked.

image

Then select TypeScript from the list:

image

 

Default values should be correct:

image

 

If you have any problems at this point, make sure that Node was installed correctly and that you installed TypeScript, these are the most common problems.

 

Now with a File Watcher created, whenever you save a change to a TS file, it while automoatically compile the JS file.  Like so:

image

 

From this point on you will be able to see full syntax highlighting as well as code completion:

image

 

 

Additionally, you can set a breakpoint in WebStorm:

image

 

And assuming you’ve enabled the WebStorm plugin, you can debug in Chrome:

image

 

Which then allows you to perform the standard debugging tasks in WebStorm:

image

 

If you are coming from Visual Studio, there is one major difference to be aware of.  In Visual Studio, adding a file to your project makes it available for code completion.  In WebStorm this isn’t the case.  If you include a library, such as Phaser, you need to add a reference identifier at the top of your ts file, like so:

 

/// <reference path="phaser.d.ts"/>

 

Then code completion will work properly.

Programming


See More Tutorials on DevGa.me!

Month List