Subscribe to GameFromScratch on YouTube Support GameFromScratch on Patreon

12. December 2014

 

Modo, a popular 3D modeling application ( learn more about Modo and more in my Introduction to 3D Applications post, or watch the video ) has just been released on Steam.  Actually, Steam being Steam, it’s actually on sale right now for 25% off!

 

image

 

 

Considering the full price of Modo is about $1,600, the Steam Indie version for $250 CDN is quite a bargain!  So, what’s the catch?

 

Yeah, there’s always a catch isn’t there?  So, what’s the difference between Modo and Modo Indie?  Well…

 

  • Project file (.lxf) linked to Steam account / cannot be shared with other users
  • OBJ and FBX export limited to 100k polys
  • Bake and render resolution limited to 4k
  • Command eval options unavailable
  • Command, scripts, and command history panel results unavailable except “undo” and “history”
  • Python editor, third-party scripts, and third-party plugins unavailable
  • OBJ and FBX export only
  • Can import all formats but can only save in .lxf format
  • Image save formats limited to .png, .jpg, .tiff and .exr

 

So they went the Maya LT route and limited the functionality but not the licensing.  This means you can use Modo Indie regardless to how much money you make or how you use it.  This is the deal breaker for many Indie licenses…  As to the stripped out functionality, I think the first restriction is going to be the most difficult one for many to swallow.

 

Simply put you cannot collaborate on a Modo Indie project!  Only one artist will be able to work on the project, ever.  It’s tied to your Steam account id and cannot be shared with others or distributed, although obviously you can export/import in OBJ or FBX format, so for many this wont be much of a limitation in the end.  However for teams with multiple people working on the same resource, or teams where the artist could change at some point in the future, this is going to be a gigantic deal breaker.

 

I haven’t used Modo recently enough to tell if script/plugin support is a big loss or not.  I frankly don’t recall there being any plugins back when I evaluated.  I understand why they do this though, or the very first plugin that would be released would be something to get around the 100K polygon limits.

 

The other limitations seem reasonable.  The 100K export limit precludes you from being able to use Modo as a level editor, but I don’t think many people are doing this anyways.  For game ready assets, 100K polygons and 4K texture limits seem appropriate.  If your needs are much more extreme than that, I can see how you wouldn’t be viewed as an Indie anymore and thus should have funds to purchase the full version.

 

Another affordable 3D option for indie game devs is always welcome, more choice is almost always good.  If you are interested in picking up Modo, the sale ends December 18th/2014.  That said, this is Steam we are talking about, so there will always be another bigger and better sale around the corner!  Oh, they also have a package deal with their MARI Indie texture painting package.  You can purchase both together for $315CDN.

 

Oh yeah, they also released MARI Indie as well… suppose I should mention that.  I have absolutely no experience with Mari, so I figured I would go with their description:

 

MARI indie is the fastest, most artist-friendly way to texture, paint, and detail amazing 3D assets for your game projects. Fine-tuned for individual developers and freelance artists in the game industry, MARI indie is an invaluable toolset that lets you focus on the artistic aspect of 3D game asset painting without getting bogged down by the technical side -- free of any individual commercial restrictions and without breaking your budget!

 

Delivering massive power and flexibility at minimal cost, MARI indie gives you ultimate control over painting and detailing every facet of your 3D models and animations in a way that's quick, intuitive, and highly creative -- all in one complete package that lets you work just the way you want.


Supported by the world’s most advanced layering system, MARI indie is a real workhorse. It gives game artists and content creators all the functionality they need to exactly replicate the look of assets in their games engine.

 

Once again, MARI Indie has no limitations on commerical usage, all limitations are technical:

 

  • Project file (.mra) linked to Steam account / cannot be shared with other users
  • Allowed export formats: .psd, .png, .tga, .jpg
  • Output formats no longer available .exr, .tif, .tiff, .hdr, .dds, and .ptx
  • The patch count is limited to 2 patches
  • The object count is limited to 3 objects
  • The output texture resolution size has been limited to 4k
  • Python scripting disabled

 

With zero experience with MARI I have no opinion on these limitations either way.

 

But WAIT, there’s more!

 

image

 

Yep, there is also a subscription plan available.  And at as low as $11 CDN a month it’s pretty freaking reasonable too.  For example, Maya LT is $30 a month, although they only offer monthly rates.

Art, News ,

9. December 2014

 

In this video tutorial we look at using the different types of Cameras available, using a Camera to position your world in a device independent way.  Next we discuss the various Viewport options available for making your render results look best across a number of devices.  Since this video was released at the same time as the text version of the tutorial, I will be linking to those tutorials for code examples.

 

You can see the full 1080p video directly on YouTube or embedded below.

 

 

For the text tutorials, or for the code or assets used in this tutorial, check this tutorial on Cameras and this tutorial on Viewports.

 

Additionally, the text only tutorial also covers converting coordinates too and from your world coordinates, something I forgot to do in the video tutorial.

Programming , , ,

9. December 2014

 

 

 

In the previous tutorial we looked at how to use a camera with LibGDX to abstract away resolution differences so you are no longer using pixel coordinates.  This however doesn’t really help you all that much if your aspect ratios are massively different.  Fortunately LibGDX implements the concepts of Viewports, which can be considered the coding equivalent of the Aspect button on your HDTV, controlling how non-native content is scaled to be displayed on your TV.

 

There are a number of different Viewports available:

 

Or of course you can inherit Viewport and create your own.

 

We are going to use the following image ( click for full resolution, no squished version ) taken from here.

Aspect

 

 

Here is the code for creating a FillViewport, which results in behavior very similar to using no Viewport at all:

 

package com.gamefromscratch;

import com.badlogic.gdx.ApplicationAdapter;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.utils.viewport.FillViewport;
import com.badlogic.gdx.utils.viewport.Viewport;

public class ViewportDemo extends ApplicationAdapter {
   SpriteBatch batch;
   Sprite aspectRatios;
   OrthographicCamera camera;
   Viewport viewport;

   @Override
   public void create () {
      batch = new SpriteBatch();
      aspectRatios = new Sprite(new Texture(Gdx.files.internal("Aspect.jpg")));
      aspectRatios.setPosition(0,0);
      aspectRatios.setSize(100,100);

      camera = new OrthographicCamera();
      viewport = new FillViewport(100,100,camera);
      viewport.apply();

      camera.position.set(camera.viewportWidth/2,camera.viewportHeight/2,0);
   }

   @Override
   public void render () {

      camera.update();
      Gdx.gl.glClearColor(1, 0, 0, 1);
      Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

      batch.setProjectionMatrix(camera.combined);
      batch.begin();
      aspectRatios.draw(batch);
      batch.end();
   }

   @Override
   public void dispose(){
      aspectRatios.getTexture().dispose();
   }

   @Override
   public void resize(int width, int height){
      viewport.update(width,height);
      camera.position.set(camera.viewportWidth/2,camera.viewportHeight/2,0);
   }
}

 

The code is pretty straight forward but has a few caveats to be aware of.  Most importantly, you absolutely need to update the viewport in the ApplicationAdapter’s resize method or the viewport will not work.  Standard process is to create your camera, then create the viewport passing in the viewport resolution as well as the camera to apply to.  For the technically minded, the Viewport ultimately manipulates the GL viewport behind the scenes.  Now let’s look at the various viewport options, we simply replace one line of code in each example:

 

Here are the results of various options running at 900x600 resolution:

 

No Camera or Viewport

image

 

 

viewport = new ExtendViewport(100,100,camera);

image

 

 

viewport = new FillViewport(100,100,camera);

image

 

viewport = new FitViewport(100,100,camera);

image

 

viewport = new StretchViewport(100,100,camera);

image

 

viewport = new ScreenViewport(camera);

image

 

 

The behavior of most of those viewports should be evident from the results but a few certainly require a bit of explanation.  The oddest result is most likely ScreenViewport.  When you use ScreenViewport you are simply saying “create a viewport the same size as the screen resolution”.  However, we also told our game that the sprite is 100x100 in size, but instead of being treated in our arbitrary camera units, this value is now relative to actual pixels, so as a result, our background is drawn as a 100 x 100 pixel rectangle.

 

You may also be wondering what the difference between Fill and Stretch is.  It isn’t obvious because our source image and our resolution are both widescreen.  When you run in a 4:3 aspect ratio, such as 1024x768 of the iPad, the results become more obvious:

 

FillViewport @ 1024x768

image

 

StetchViewport @ 1024x768

image

 

Fill will always fill the viewport, even if it means have to crop part of the image.  As you can see in the first image, the blue border at the top and bottom is not visible.  IMHO, this is the worst looking of all scaling options.

 

Stretch on the other hand, stretches the result to fit the screen width and height, however it also results in some distortion.  This mode is probably the easiest to implement, but the results depend heavily on your games art style.

 

 

Mapping To And From Camera to Screen Coordinates

 

One last quick thing to touch upon with Cameras and Viewports… how do you handle converting coordinates, such as touch or click events from our arbitrary camera coordinates to screen coordinates?  Fortunately it’s quite easy.

 

package com.gamefromscratch;

import com.badlogic.gdx.ApplicationAdapter;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.InputProcessor;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
import com.badlogic.gdx.math.Vector3;
import com.badlogic.gdx.utils.viewport.StretchViewport;
import com.badlogic.gdx.utils.viewport.Viewport;

public class mouseproject extends ApplicationAdapter implements InputProcessor {
   SpriteBatch batch;
   Sprite aspectRatios;
   OrthographicCamera camera;
   Viewport viewport;

   @Override
   public void create () {
      batch = new SpriteBatch();
      aspectRatios = new Sprite(new Texture(Gdx.files.internal("Aspect.jpg")));
      aspectRatios.setPosition(0,0);
      aspectRatios.setSize(100,100);

      camera = new OrthographicCamera();
      viewport = new StretchViewport(100,100,camera);
      viewport.apply();

      camera.position.set(camera.viewportWidth/2,camera.viewportHeight/2,0);
      Gdx.input.setInputProcessor(this);
   }

   @Override
   public void render () {

      camera.update();
      Gdx.gl.glClearColor(1, 0, 0, 1);
      Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

      batch.setProjectionMatrix(camera.combined);
      batch.begin();
      aspectRatios.draw(batch);
      batch.end();
   }

   @Override
   public void dispose(){
      aspectRatios.getTexture().dispose();
   }

   @Override
   public void resize(int width, int height){
      viewport.update(width, height);
      camera.position.set(camera.viewportWidth / 2, camera.viewportHeight / 2, 0);
   }

   @Override
   public boolean keyDown(int keycode) {
      return false;
   }

   @Override
   public boolean keyUp(int keycode) {
      return false;
   }

   @Override
   public boolean keyTyped(char character) {
      return false;
   }

   @Override
   public boolean touchDown(int screenX, int screenY, int pointer, int button) {

      Gdx.app.log("Mouse Event","Click at " + screenX + "," + screenY);
      Vector3 worldCoordinates = camera.unproject(new Vector3(screenX,screenY,0));
      Gdx.app.log("Mouse Event","Projected at " + worldCoordinates.x + "," + worldCoordinates.y);
      return false;
   }

   @Override
   public boolean touchUp(int screenX, int screenY, int pointer, int button) {
      return false;
   }

   @Override
   public boolean touchDragged(int screenX, int screenY, int pointer) {
      return false;
   }

   @Override
   public boolean mouseMoved(int screenX, int screenY) {
      return false;
   }

   @Override
   public boolean scrolled(int amount) {
      return false;
   }
}

 

It's simply a matter of using Camera.unproject to convert a screen coordinate to your world coordinate, and Camera.project to do the reverse.  There is more to Viewports and Cameras, but that covers enough to get you going in most cases.  Keep in mind, you don’t need to use either, but they both certainly make making a game that runs across devices a lot easier.

 

Programming , ,

8. December 2014

 

 

In this tutorial we are going to look at how to use Cameras ( and in the next, Viewports ) in LibGDX.  I will admit, I am a bit late in covering this topic, as I should have covered it much earlier in the series.  In fact, in some prior tutorials I actually made use of Cameras with little prior discussion.  Better late than never, no?

 

The first immediate question that comes to mind are probably “What’s a camera, what’s a viewport and how are they different?”.

 

Well, basically a camera is responsible for being the players “eye” into the game world.  It’s an analogy to the way video camera’s work in the real world.  A viewport represents how what the camera sees is displayed to the viewer.  Any easy way to think about this is to think about your HD cable or satellite box and your HD TV.  The video signal comes in to your box ( this is the camera ), this is the picture that is going to be displayed.  Then your TV devices how to display the signal that comes in.  For example, the box may send you a 480i image, or a 1080p image, and it’s your TV’s responsibility to decide how it’s displayed.  This is what a viewport does… takes an incoming image and adapts it to run best on the device it’s sent to it.  Sometime this means stretching the image, or displaying black bars or possibly doing nothing at all.

 

So, simple summary description…

  • Camera – eye in the scene, determines what the player can see, used by LibGDX to render the scene.
  • Viewport – controls how the render results from the camera are displayed to the user, be it with black bars, stretched or doing nothing at all.

 

In LibGDX there are two kinds of cameras, the PerspectiveCamera and the OrthographicCamera.  Both are very big words and somewhat scary, but neither needs to be.  First and foremost, if you are working on a 2D game, there is a 99.9% change you want an Orthographic camera, while if you are working in 3D, you most likely ( but not always ) want to use a Perspective camera.

 

Now, the difference between them.  A perspective camera tries to mimic the way the human eye sees the world ( instead of how the world actually works ).  To the human eye, as something gets further away the smaller it appears.  One of the easiest ways to illustrate the effect is to fire up Blender and view a Cube in both perspectives:

 

Perspective Rendered:

image

 

Orthographic Rendered:

image

 

When dealing with 3D, a Perspective camera looks much more like we expect in the real world.  However, when you are working in 2D, you are actually still in 3D but for the most part you are ignoring depth ( except for sprite ordering ).  In a 2D game, you don’t want objects to change size the further “into the screen” they are.

 

So, TL;DR version, if you are making a 2D game, you probably want Orthographic.  If you aren’t, you probably don’t.

 

Ok, enough talk, CODE time.

 

We are going to implement a simple Orthographic camera that pans around a single image that represents our game world.  For this demo I am going to use this 2048x1024 image (click it for the full resolution, non-squished version, or make your own):

TheWorld

 

Paint skills at their finest!  Now lets look at rendering this using a camera:

package com.gamefromscratch;

import com.badlogic.gdx.ApplicationAdapter;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;

public class CameraDemo extends ApplicationAdapter {
   SpriteBatch batch;
   Texture img;
   OrthographicCamera camera;
   
   @Override
   public void create () {
      batch = new SpriteBatch();
      img = new Texture("TheWorld.png");
      camera = new OrthographicCamera(Gdx.graphics.getWidth(),Gdx.graphics.getHeight());
   }

   @Override
   public void render () {
      Gdx.gl.glClearColor(1, 0, 0, 1);
      Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

      camera.update();
      batch.setProjectionMatrix(camera.combined);
      batch.begin();
      batch.draw(img, 0, 0);
      batch.end();
   }
}

The process is quite simple.  We simply create a camera, then in our render loop we call it’s update() method then set it as the projectionMatrix of our SpriteBatch.  If you are new to 3D ( fake 2D ), the ProjectionMatrix along with the View Matrix are matrix based multiplications responsible for transforming 3D data to 2D screen space.  Camera.combined returns the camera’s view and perspective matrixes multiplied together.  Essentially this process is what positions everything from the scene to your screen.

 

Now if we go ahead and run this code we see:

image

 

Hmmmm… that may not be what you were expecting.  So what exactly happened here?

 

Well, the camera is located at the position 0,0.  However, the camera’s lens is actually at it’s center.   The red you see in the above image are the portions of the scene that have nothing in it.  So in the above example if you want to start at the bottom left of your world you actually need to take the camera’s dimensions into account.  Like so:

      camera = new OrthographicCamera(Gdx.graphics.getWidth(),Gdx.graphics.getHeight());
      camera.translate(camera.viewportWidth/2,camera.viewportHeight/2);

Now when you run it, the results are probably more along the lines you expected:

image

 

In the previous examples I actually did something you really don’t want to do in real life:

camera = new OrthographicCamera(Gdx.graphics.getWidth(),Gdx.graphics.getHeight());

 

I am setting the camera viewport to use the devices resolution, then later I am translating using pixels.  If you are working across multiple devices, this almost certainly isn’t the approach you want to take as so many different devices have different resolutions.  Instead what you normally want to do is work in world units of some form.  This is especially true if you are working with a physics engine like Box2D.

 

So, what’s a world unit?  The short answer is, whatever you want it to be!  The nice part is, regardless to what units you choose, it will behave the same across all devices with the same aspect ratio!  Aspect ration is the more important factor here.  The aspect ratio is the ratio of horizontal to vertical pixels.

 

Let’s take the above code and modify it slightly to no longer use pixel coordinates.  Instead we will define our world as 50 units wide by 25 tall.  We then are going to set our camera to be the worlds height and centered.  Finally we will hook it up so you can control the camera using arrow keys.  Let’s see the code:

package com.gamefromscratch;

import com.badlogic.gdx.ApplicationAdapter;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.Input;
import com.badlogic.gdx.InputProcessor;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;

public class CameraDemo2 extends ApplicationAdapter implements InputProcessor {
   SpriteBatch batch;
   Sprite theWorld;
   OrthographicCamera camera;

   final float WORLD_WIDTH = 50;
   final float WORLD_HEIGHT = 25;

   @Override
   public void create () {
      batch = new SpriteBatch();
      theWorld = new Sprite(new Texture(Gdx.files.internal("TheWorld.png")));
      theWorld.setPosition(0,0);
      theWorld.setSize(50,25);

      float aspectRatio = (float)Gdx.graphics.getHeight()/(float)Gdx.graphics.getWidth();

      camera = new OrthographicCamera(25 * aspectRatio ,25);
      camera.position.set(WORLD_WIDTH/2,WORLD_HEIGHT/2,0);

      Gdx.input.setInputProcessor(this);
   }

   @Override
   public void render () {
      Gdx.gl.glClearColor(1, 0, 0, 1);
      Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

      camera.update();
      batch.setProjectionMatrix(camera.combined);
      batch.begin();
      theWorld.draw(batch);
      batch.end();
   }

   @Override
   public boolean keyUp(int keycode) {
      return false;
   }

   @Override
   public boolean keyDown(int keycode) {
      if(keycode == Input.Keys.RIGHT)
         camera.translate(1f,0f);
      if(keycode == Input.Keys.LEFT)
         camera.translate(-1f,0f);
      if(keycode == Input.Keys.UP)
         camera.translate(0f,1f);
      if(keycode == Input.Keys.DOWN)
         camera.translate(0f,-1f);

      return false;
   }

   @Override
   public boolean keyTyped(char character) {
      return false;
   }

   @Override
   public boolean touchDown(int screenX, int screenY, int pointer, int button) {
      return false;
   }

   @Override
   public boolean touchUp(int screenX, int screenY, int pointer, int button) {
      return false;
   }

   @Override
   public boolean touchDragged(int screenX, int screenY, int pointer) {
      return false;
   }

   @Override
   public boolean mouseMoved(int screenX, int screenY) {
      return false;
   }

   @Override
   public boolean scrolled(int amount) {
      return false;
   }
}

Now when you run this code:

image

 

Now let’s look at what happens when we change our application’s resolution.  Since we aren’t using pixels anymore, the results should be fairly smooth.

 

In case you forgot, you set the resolution in the platform specific Application class.  For iOS and Android, you cannot set the resolution.  For HTML and Desktop you can.  Setting the resolution on Desktop is a matter of editing DesktopLauncher, like so:

public class DesktopLauncher {
   public static void main (String[] arg) {
      LwjglApplicationConfiguration config = new LwjglApplicationConfiguration();
      config.width = 920;
      config.height = 480;
      new LwjglApplication(new CameraDemo2(), config);
   }
}

Here is the code running at 920x480

image

 

And here is 1280x400:

image

 

As you can see, the code updates so the results render in a pixel independent way.

 

However, and as you can see above, if your aspect ratios don’t stay the same, the results look massively different.  In the previous example you can see in the 1280x400 render, the results look squished and the world contains a great deal less content.  Obviously, the values I used to illustrate this point are pretty extreme.  Let’s instead use the two most common different aspect ratios, 16:9 ( most Android devices, many consoles running at 1080p ) and 4:3 ( the iPad and SD NTSC signals ):

 

16:9 results:

image

 

4:3 results:

image

 

While much closure, the results are still going to look rather awful.  There are two ways to deal with this, both have their merits.

 

First, is create a version for each major aspect ratio.  This actually makes a great deal of sense although it can be a pain in the butt.  The final results are the best, but you double your burden for art assets.  We will talk about managing multiple resolution art assets in a different tutorial at a later date.

 

Second, you pick a native aspect ratio for your game to run at, then use a viewport to manage the different aspect ratios, just like you use the aspect button on your TV.  Since this tutorial is getting pretty long, we will cover Viewports in the next section, so stay tuned!

 

Programming , , ,

4. December 2014

 

The Phaser HTML5 game development library has been churning out the releases as of late, and just yesterday 2.2.1 was released.  Perhaps most impressively, much of the releases content came from members within the community, always a good sign with open source projects. 

 

The biggest new feature is the Scale Manager, which you can read about here or from this newly released e-book.  The ScaleManager is to help enable your code to run on devices with multiple different resolutions.  The biggest change is Phaser moved to a proper fixed-step game loop, fully decoupling logic and rendering.

 

The full (and massive) change log below:

 

New Features
  • Updated to Pixi v2.2.0 - see separate change log entry below.
  • Cache.getRenderTexture will retrieve a RenderTexture that is stored in the Phaser Cache. This method replaces Cache.getTexture which is now deprecated.
  • Cache.autoResolveURL is a new boolean (default false) that automatically builds a cached map of all loaded assets vs. their absolute URLs, for use with Cache.getURL and Cache.checkURL. Note that in 2.1.3 and earlier this was enabled by default, but has since been moved behind this property which needs to be set to true before you load any assets to enable.
  • You can now call Tween.to again on a Tween that has already completed. This will re-use the same tween, on the original object, without having to recreate the Tween again. This allows a single tween instance to be re-used multiple times, providing they are linked to the same object (thanks InsaneHero)
  • Phaser.Color.valueToColor converts a value: a "hex" string, a "CSS 'web' string", or a number - into red, green, blue, and alpha components (thanks @pnstickne #1264)
  • Stage.backgroundColor now supports CSS 'rgba' values, as well as hex strings and hex numbers (thanks @pnstickne #1234)
  • Pointer.addClickTrampoline now adds in support for click trampolines. These raise pointer events into click events, which are required internally for a few edge cases like IE11 full screen mode support, but are also useful if you know you specifically need a DOM click event from a pointer (thanks @pnstickne #1282)
  • Point.floor will Math.floor both the x and y values of the Point.
  • Point.ceil will Math.ceil both the x and y values of the Point.
  • ScaleManager.scaleSprite takes a Sprite or Image object and scales it to fit the given dimensions. Scaling happens proportionally without distortion to the sprites texture. The letterBox parameter controls if scaling will produce a letter-box effect or zoom the sprite until it fills the given values.
  • Phaser.DOM.getBounds is a cross-browser element.getBoundingClientRect method with optional cushion.
  • Phaser.DOM.calibrate is a private method that calibrates element coordinates for viewport checks.
  • Phaser.DOM.aspect gets the viewport aspect ratio (or the aspect ratio of an object or element)
  • Phaser.DOM.inViewport tests if the given DOM element is within the viewport, with an optional cushion parameter that allows you to specify a distance.
  • Phaser.DOM.viewportWidth returns the viewport width in pixels.
  • Phaser.DOM.viewportHeight returns the viewport height in pixels.
  • Phaser.DOM.documentWidth returns the document width in pixels.
  • Phaser.DOM.documentHeight returns the document height in pixels.
  • TilemapLayers have been given a decent performance boost on canvas with map shifting edge-redraw (thanks @pnstickne #1250)
  • A large refactor to how the internal game timers and physics calculations has been made. We've now swapped to using a fixed time step internally across Phaser, instead of the variable one we had before that caused glitchse on low-fps systems. Thanks to pjbaron for his help with all of these related changes.
  • We have separated the logic and render updates to permit slow motion and time slicing effects. We've fixed time calling to fix physics problems caused by variable time updates (i.e. collisions sometimes missing, objects tunneling, etc)
  • Once per frame calling for rendering and tweening to keep things as smooth as possible
  • Calculates a suggestedFps value (in multiples of 5 fps) based on a 2 second average of actual elapsed time values in the Time.update method. This is recalculated every 2 seconds so it could be used on a level-by-level basis if a game varies dramatically. I.e. if the fps rate consistently drops, you can adjust your game effects accordingly.
  • Game loop now tries to "catch up" frames if it is falling behind by iterating the logic update. This will help if the logic is occasionally causing things to run too slow, or if the renderer occasionally pushes the combined frame time over the FPS time. It's not a band-aid for a game that floods a low powered device however, so you still need to code accordingly. But it should help capture issues such as gc spikes or temporarily overloaded CPUs.
  • It now detects 'spiraling' which happens if a lot of frames are pushed out in succession meaning the CPU can never "catch up". It skips frames instead of trying to catch them up in this case. Note: the time value passed to the logic update functions is always constant regardless of these shenanigans.
  • Signals to the game program if there is a problem which might be fixed by lowering the desiredFps
  • Time.desiredFps is the new desired frame rate for your game.
  • Time.suggestedFps is the suggested frame rate for the game based on system load.
  • Time.slowMotion allows you to push the game into a slow motion mode. The default value is 1.0. 2.0 would be half speed, and so on.
  • Time.timeCap is no longer used and now deprecated. All timing is now handled by the fixed time-step code we've introduced.
  • Time.now can no longer be relied upon to contain a timestamp value. If the browser supports requestAnimationFrame then Time.now will contain the high resolution timer value that rAf generates. Otherwise it will contain the value of Date.now. If you require the actual time value (in milliseconds) then please use Time.timeinstead. Note that all Phaser sub-systems that used to rely on Time.now have been updated, so if you have any code that extends these please be sure to check it.
  • Game.forceSingleUpdate will force just a single logic update, regardless of the delta timer values. You can use this in extremely heavy CPU situations where you know you're about to flood the CPU but don't want Phaser to get stuck in a spiral.
  • Tilemap.createFromTiles will convert all tiles matching the given tile index (or an array of indexes) into Sprites. You can optionally then replace these tiles if you wish. This is perfect for games when you want to turn specific tiles into Sprites for extra control. The Sprites have an optional properties object which they can be populated with.
  • Added support for the Wheel Event, which is the DOM3 spec (thanks @pnstickne #1318)
  • Wheel Scroll Event (old non-FF) and DOM Mouse Wheel (old FF) are supported via a non-exported reused wrapper object; WheelEventProxy. The proxy methods are generated one-time dynamically but only when needed.
  • Key.justDown allows you to test if a Key has just been pressed down or not. You can only call justDown once per key press. It will only return true once, until the Key is released and pressed down again. This allows you to use it in situations where you want to check if this key is down without using a Signal, such as in a core game loop (thanks @pjbaron #1321)
  • Key.justUp allows you to test if a Key has just been released or not. You can only call justUp once per key press. It will only return true once, until the Key is pressed down and released again. This allows you to use it in situations where you want to check if this key is up without using a Signal, such as in a core game loop (thanks @pjbaron #1321)
  • Device.whenReady is a new signal that you can use to tell when the device is initialized.
  • Device.onInitialized is dispatched after device initialization occurs but before any of the ready callbacks have been invoked. Local "patching" for a particular device can/should be done in this event.
  • TweenManager.removeFrom method allows you to remove a tween from a game object such as a Sprite (thanks @lewster32 #1279)
  • Tweens have been completely rewritten. They're now much more flexible and efficient than before:
  • When specifying the ease in Tween.to or Tween.from you can now use a string instead of the Function. This makes your code less verbose. For example instead of Phaser.Easing.Sinusoidal.Out and you can now just use the string "Sine".The string names match those used by TweenMax and includes: "Linear", "Quad", "Cubic", "Quart", "Quint", "Sine", "Expo", "Circ", "Elastic", "Back", "Bounce", "Power0", "Power1", "Power2", "Power3" and "Power4". You can append ".easeIn", ".easeOut" and "easeInOut" variants. All are supported for each ease types.
  • Tweens now create a TweenData object. The Tween object itself acts like more of a timeline, managing multiple TweenData objects. You can now call Tween.to and each call will create a new child tween that is added to the timeline, which are played through in sequence.
  • Tweens are now bound to the new Time.desiredFps value and update based on the new Game core loop, rather than being bound to time calculations. This means that tweens are now running with the same update logic as physics and the core loop.
  • Tween.timeScale allows you to scale the duration of a tween (and any child tweens it may have). A value of 1.0 means it should play at the desiredFps rate. A value of 0.5 will run at half the frame rate, 2 at double and so on. You can even tween the timeScale value for interesting effects!
  • Tween.reverse allows you to instantly reverse an active tween. If the Tween has children then it will smoothly reverse through all child tweens as well.
  • Tween.repeatAll allows you to control how many times all child tweens will repeat before firing the Tween.onComplete event. You can set the value to -1 to repeat forever.
  • Tween.loop now controls the looping of all child tweens.
  • Tween.onRepeat is a new signal that is dispatched whenever a Tween repeats. If a Tween has many child tweens its dispatched once the sequence has repeated.
  • Tween.onChildComplete is a new signal that is dispatched whenever any child tweens have completed. If a Tween consists of 4 sections you will get 3 onChildComplete events followed by 1 onComplete event as the final tween finishes.
  • Chained tweens are now more intelligently handled. Because you can easily create child tweens (by simply calling Tween.to multiple times) chained tweens are now used to kick-off longer sequences. You can pass as many Tween objects to Tween.chain as you like as they'll all be played in sequence. As one Tween completes it passes on to the next until the entire chain is finished.
  • Tween.stop has a new complete parameter that if set will still fire the onComplete event and start the next chained tween, if there is one.
  • Tween.delay, Tween.repeat, Tween.yoyo, Tween.easing and Tween.interpolation all have a new index parameter. This allows you to target specific child tweens, or if set to -1 it will update all children at once.
  • Tween.totalDuration reports the total duration of all child tweens in ms.
  • There are new easing aliases:
  • * Phaser.Easing.Power0 = Phaser.Easing.Linear.None
  • * Phaser.Easing.Power1 = Phaser.Easing.Quadratic.Out
  • * Phaser.Easing.Power2 = Phaser.Easing.Cubic.Out
  • * Phaser.Easing.Power3 = Phaser.Easing.Quartic.Out
  • * Phaser.Easing.Power4 = Phaser.Easing.Quintic.Out
  • ScaleManager.windowContraints now allows specifying 'visual' or 'layout' as the constraint. Using the 'layout' constraint should prevent a mobile device from trying to resize the game when zooming.

    Including the the new changes the defaults have been changed to

    windowContraints = { right: 'layout', bottom: '' }

    This changes the current scaling behavior as seen in "Game Scaling" (as it will only scale for the right edge) but also prevents such scaling from going bonkers in some mobile environments like the newer Android browser. (Automatic scroll-to-top, albeit configurable, enabled for non-desktop by default is not a fun situation here.)

    To obtain the current semantics on a desktop the bottom should be changed to 'layout'; although this will result in different behavior depending on mobile device. To make the sizing also follow mobile zooming they should be changed to 'visual'.

    Also added temp Rectangle re-used for various internal calculations.

  • Phaser.DOM now also special-cases desktops to align the layout bounds correctly (this may disagree with CSS breakpoints but it aligns the with actual CSS width), without applying a window height/width expansion as required on mobile browsers.

  • Signals have been heavily restructured to cut down on the number that are generated in-game. New signal proxies manage the setting and creation as required, cutting down on the volume of run-time object creation significantly. No user code needs to change, however if you did override Phaser.Signal or Sprite.Events then please be aware of the changes by inspecting the source (and commit #1389 by @pnstickne).
  • Game.lockRender is a new property. If false Phaser will automatically render the display list every update. If truethe render loop will be skipped. You can toggle this value at run-time to gain exact control over when Phaser renders. This can be useful in certain types of game or application. Please note that if you don't render the display list then none of the game object transforms will be updated, so use this value carefully.
Updates
  • TypeScript definitions fixes and updates (thanks @clark-stevenson @draconisNoctis)
  • The TypeScript definitions have moved to the typescript folder in the root of the repository.
  • Cache._resolveUrl has been renamed to Cache._resolveURL internally and gained a new parameter. This method is a private internal one.
  • Cache.getUrl is deprecated. The same method is now available as Cache.getURL.
  • Loader.useXDomainRequest used to be enabled automatically for IE9 but is now always set to false. Please enable it only if you know your server set-up / CDN requires it, as some most certainly do, but we're finding them to be less and less used these days, so we feel it's safe to now disable this by default (#1248)
  • Game.destroy now destroys either the WebGLRenderer or CanvasRenderer, whichever Pixi was using.
  • Particle.Emitter will now automatically set particle.body.skipQuadTree to true to help with collision speeds within Arcade Physics.
  • Particle.Emitter.explode (or Emitter.start with the explode parameter set to true) will immediately emit the required quantity of particles and not delay until the next frame to do so. This means you can re-use a single emitter across multiple places in your game that require explode-style emissions, just by adjusting the emitter.x andemitter.y properties before calling explode (thanks Insanehero)
  • Phaser.Polygon has been refactored to address some Pixi v2 migration issues (thanks @pnstickne for the original implementation #1267)
  • Polygon.area is now only calculated when the Polygon points list is modified, rather than on every call.
  • Phaser.Polygon can now accept the points list in a variety of formats: Arrays of Points, numbers, objects with public x/y properties or any combination of, or as a parameter list (thanks @pnstickne for the original implementation #1267)
  • All of the Input classes now use the more consistent enabled property instead of disabled. I.e. you can now checkif (input.mouse.enabled) rather than if (!input.mouse.disabled). The disabled property has been moved to a getter for backwards compatibility but is deprecated and will be removed in a future version (thanks @pnstickne #1257)
  • The Input class has been given a minor refactor to tidy things up. Specifically:
    • pointerN are aliases to backed pointers[N-1] array. This simplifies (and increases the efficiency of) looping through all the pointers when applicable; also eliminates pointer-existence checks Removes various hard-coded limits (added MAX_POINTERS); changed maxPointers default
    • Removed some special-casing from cases where it did not matter
    • Removed === false/true, == usage for consistency, changed missing value check to typeof, etc.
    • Updated documentation for specificity; added @public\@protected
    • @deprecated currentPointers due to odd set pattern; totalCurrentPointers is more appropriate. (thanks @pnstickne #1283)
  • Various ScaleManager fixes and updates (thanks @pnstickne):
    • Scale modes can now be set independently
    • Switching between fullscreen and normal correctly restores modes
    • Alignment does not incorrectly offset in fullscreen mode (#1255)
    • Changing scale/alignment promptly refreshes layout
    • isFullScreen returns a boolean, as it should
    • Faster parent checks (if required)
    • NO_SCALE should not not scale (vs previous behavior of having no behavior)
    • Correct usage of scaleMode depending on mode
    • Fullscreen Mode always scaling to fill screen in Firefox (#1256)
  • AudioSprite - removed an unnecessary if-statement (thanks @DaanHaaz #1312)
  • ArcadePhysics.skipQuadTree is now set to true by default. A QuadTree is a wonderful thing if the objects in your game are well spaced out. But in tightly packed games, especially those with tilemaps or single-screen games, they are a considerable performance drain and eat up CPU. We've taken the decision to disable the Arcade Physics QuadTree by default. It's all still in there and can be re-enabled via game.physics.arcade.skipQuadTree = false, but please only do so if you're sure your game benefits from this.
  • Phaser.DOM now houses new DOM functions. Some have been moved over from ScaleManager as appropriate.
  • Key.justPressed has bee renamed to Key.downDuration which is a much clearer name for what the method actually does. See Key.justDown for a nice clean alternative.
  • Key.justReleased has bee renamed to Key.upDuration which is a much clearer name for what the method actually does. See Key.justUp for a nice clean alternative.
  • Keyboard.justPressed has bee renamed to Keyboard.downDuration which is a much clearer name for what the method actually does.
  • Keyboard.justReleased has bee renamed to Keyboard.upDuration which is a much clearer name for what the method actually does.
  • Keyboard.downDuration, Keyboard.upDuration and Keyboard.isDown now all return null if the Key wasn't found in the local keys array.
  • The Phaser.Device class has been made into a singleton and removed it's dependency on Phaser.Game (thanks @pnstickne #1328)
  • ArrayList has been renamed to ArraySet (as it's actually a data set implementation) and moved from the corefolder to the utils folder (thanks @pnstickne)
  • If you are reloading a Phaser Game on a page that never properly refreshes (such as in an AngularJS project) then you will quickly run out of AudioContext nodes. If this is the case create a global var called PhaserGlobal on the window object before creating the game. The active AudioContext will then be saved towindow.PhaserGlobal.audioContext when the Phaser game is destroyed, and re-used when it starts again (#1233)
  • Camera.screenView is now deprecated. All Camera culling checks are made against Camera.view now instead.
  • Various CocoonJS related hacks removed thanks to fixes from Ludei directly in CocoonJS! Woohoo :)
  • Phaser.HEADLESS check removed from the core game loop. If you need to disable rendering you can now override the Phaser.Game.updateRender method instead with your own.
  • Group.forEach fixed against browser de-optimization (thanks @pnstickne #1357)
  • Phaser.Signals have been taken on a diet. They have been updated such that there is significantly less penalty for having many unused signals. The changes include:
  • * Changing it so there is no dispatch closure created. This is a potentially breaking change for third party code.
  • * In the rare case that code needs to obtain a dispatch-closure, the boundDispatch property can be used to trivially obtain a cached closure.
  • * The properties and default values are moved into the prototype; and the _bindings array creation is deferred. This change, coupled with the removal of the automatic closure, results in a very lightweight ~24bytes/object (in Chrome) for unbound signals.
  • With this change in place Signals now consume less than 50KB / 50KB (shallow / retained memory) for 200 sprites, where-as before they used 300KB / 600KB (thanks @pnstickne #1359)
  • Time.elapsedMS holds the number of milliseconds since the last Game loop, regardless of raF or setTimout being used.
  • Incorrectly prepared tilemap images (with dimensions not evenly divisible by the tile dimensions) would render incorrectly when compared to the display seen in Tiled. The Phaser tilemap code has been adjusted to match the way Tiled deals with this, which should help if you're using tileset images that contain extra padding/margin pixels. Additional console warnings have been added. However the fact remains that you should carefully prepare your tilesets before using them. Crop off extra padding, make sure they are the right dimensions (thanks @SoulBeaver for the report and @pnstickne for the fix #1371)
  • Text.setShadow has had the default color value changed from rgba(0,0,0,0) to rgba(0,0,0,1) so it appears as a black shadow by default - before the alpha channel made it invisible.
  • Math.getRandom will now return null if random selection is missing, or array has no entries (thanks @pnstickne #1395)
  • Array.transposeArray has had a small off-by-one error fixed. It didn't effect the results but meant returned arrays were 1 element bigger than needed (thanks @nextht #1394)
  • State.preRender is now sent two parameters: a reference to the Phaser.Game instance and a new parameter:elapsedTime which is the time elapsed since the last update.
Bug Fixes
  • Tilemaps in WebGL wouldn't update after the first frame due to a subtle change in how Pixi uploads new textures to the GPU.
  • XML files weren't being added to the URL map.
  • Cache._resolveURL was causing a Sound double-load in Firefox and causing errors (thanks @domonyiv #1253)
  • Loader.json was using the wrong context in IE9 with XDomainRequest calls (thanks @pnstickne #1258)
  • Text.updateText was incorrectly increasing the size of the texture each time it was called (thanks @spayton #1261)
  • Polygon.contains now correctly calculates the result (thanks @pnstickne @BurnedToast #1267)
  • Setting Key.enabled = false while it is down did not reset the isDown state (thanks @pnstickne #1190 #1271)
  • The Gamepad.addCallbacks context parameter was never actually remembered, causing the callbacks to run in the wrong context (thanks @englercj #1285)
  • Animation.setFrame used the wrong frames array if useLocalFrameIndex was false and a numeric frame ID was given (thanks @Skeptron #1284)
  • Fullscreen mode in IE11 now works (thanks @pnstickne)
  • Cache.addBitmapData now auto-creates a FrameData (thanks @pnstickne #1294 #1300)
  • P2.BodyDebug circles were drawing at half widths (thanks @enriqueto #1288)
  • FrameData.clone fixed when cloning data using frame names rather than indexes (thanks pjbaron)
  • Lots of the Cache getters (such as Cache.getbitmapData) would return undefined if the asset couldn't be found. They now all consistently return null for missing entries (thanks @Matoking #1305)
  • Phaser games should now work again from the CocoonJS Launcher.
  • Only one of the mouse wheel events is listened to, newest standard first. This fixes a bug in FF where it would use the default DOMMouseWheel (thanks @pnstickne #1313)
  • Stage.smoothed needed to modify the value of PIXI.scaleMode.DEFAULT instead of PIXI.scaleMode.LINEAR (thanks @pixelpicosean #1322)
  • Newly created Groups always had zero z index (thanks @spayton #1291)
  • Sprite.autoCull now properly works if the camera moves around the world.
  • Sprite.inCamera uses a much faster check if auto culling or world bounds checks are enabled and properly adjusts for camera position.
  • Camera.totalInView is a new property that contains the total number of Sprites rendered that have autoCull set to true and are within the Cameras view.
  • Emitter.setScale fixed minX minY order precedence (thanks spayton)
  • Group.iterate can now accept undefined/null as the arguments (thanks @pnstickne #1353 @tasos-ch #1352)
  • When you change State the P2 Physics world is no longer fully cleared. All of the bodies, springs, fixtures, materials and constraints are removed - but config settings such as gravity, restitution, the contact solver, etc are all retained. The P2.World object is only created the very first time you call Physics.startSystem. Every subsequent call hits P2.World.reset instead. This fixes "P2.World gravity broken after switching states" (and other related issues) (#1292 #1289 #1176)
  • Text.lineSpacing works correctly again. Before no space was added between the lines (thanks @intimidate #1367 and @brejep #1366)
  • P2.BodyDebug always lagged behind the position of the Body it was tracking by one frame, which became visible at high speeds. It now syncs its position in the Body.postUpdate which prevents this from happening (thanks @valueerror)
  • A State.preRender callback wasn't removed correctly when switching States.

 

Phaser is available here.

 

Of course, GameFromScratch has a comprehensive Phaser with TypeScript series available here.

News ,

Month List

Popular Comments

A guided tour of the Dreemchest Lua based game engine
Subscribe to GameFromScratch on YouTube Support GameFromScratch on Patreon


25. April 2013

 

As you may know from previous posts I am rather a big fan of Lua based game engines.  When I learned about a new one completely off my radar, I just had to check it out.  The game engine in question is Dreemchest.

image

 

As I mentioned earlier, Dreemchest is scripted using Lua.  Underneath Dreemchest is powered by a C++ core.  In terms of other Lua game engines, Dreemchest is probably most similar to Corona in scope.  It comes with a WYSIWYG editor and somewhat uniquely, enables you to use Flash to create your user interface.  Unlike Corona, you don’t need to authorize against and build on their servers, everything is done locally, I know some people really hate that about Corona and Gideros ( and more recently Loom ). Oh yeah, it’s also free(for now?).  Let’s jump in and take a look at Dreemchest.

 

First things first, you need to download Dreemchest, which you can do right here.  It is available for Windows and MacOS, although I have to admit, the MacOS version seems to be a lot less stable right now, so if you have a choice I would consider choosing the Windows version.  There is no installer, simply download the archive, extract it then run composer.  Dreemchest seems to be a Qt app, so I’m a bit shocked a Linux build isn’t available.  Then again, Linux is a fairly small sub-set of the population, so maybe that’s a down the road feature.

 

Meet Dreemchest Composer.

 

Dreemchest Composer in action

image

This is the WYSIWIG environment in action with the Animation sample loaded.  Currently there are over 20 samples available showing you how to perform various actions in Dreemchest.  As you can see from the Window above, it’s a pretty sparse environment, but most of the information you need is available.  Across the top is the toolbar you would use to configure and run your application.  Below the is the WYSIWYG editing area and below that is the output panel.  On your right hand side is the Property window, which is populated dynamically by your script objects, allowing you to view and configure values visually instead of in code.  Below that are your assets, that you can import, create then drag and drop into your scene.

 

The UI itself is incredibly customizable, every dialog can be detached, moved or closed, leaving you law things out exactly as you want.

image

 

Coding and documentation

 

So, where exactly do you do the coding?  If you have the Animation sample open, take a look at the assets panel and you will see a pair of script objects, App and Hero.

image

 

Double click one of these script files and it will open in the integrated text editor.

image

It’s a fairly barebones editor, but it does what you need including syntax highlighting, auto-completion and automatic indention.  It’s nice not having to switch apps to edit code.

 

The programming language itself is standard Lua 5.1, with an class inheritance system.  If you know Lua you will be immediately comfortable with Dreemchest.  If you press play or F5 to run your application, it runs directly inside Dreemchest:

image

As of right now, debugging options are quite light.  You can alter position, from portrait to landscape, simulate home button press and not much else.  Oddly enough, once the application is running, you see the options traditional debugging options, such as step in, step out and continue.  That said, I cant figure out how to add an actual breakpoint.  My guess is, this is a feature under active development.  I look forward to it too, as for now you would be limited with printing to the output window while debugging.  Build and load times are virtually non-existent, which is nice.

 

From a coding perspective, there is a pretty good amount of documentation, especially for such a young project.  As mentioned earlier, there are currently 20+ samples included with the download.  There are a series of tutorials available here as well as an API reference available here.  The API is quite straight forward, somewhat minimal, but still under developed.  Pretty much everything you need to create a 2D game is currently there, including graphics, tweening, audio and physics.  For physics, there is also an integrated shape editor which is rather convenient.  Still under development, new functionality is being added with each release.  This is critical though, as you don’t get source code, so you need all functionality needs to be in box.

 

Flashing

 

Perhaps the most innovative feature of Dreemchest is the ability to embed and communicate with Flash objects for creating your UI layer.  You can included an SWF file just like you do any other graphic file.  The swf file can contain ActionScript2 code, and the two languages can communicate back and forth.  Here is a simple example from the SDK on working with a Flash animation, showing how you can load and communicate between the languages.  uiButtons is the swf file that has been added to the scene.

class "Main"( StageObjectContainer )

function Main:main()
    -- Register necessary functions for Flash UI
    UIManager.registerFunction( 'nativeSetPitch', function( value ) trace( 'Pitch set to: '..value ) end )
        
    -- Attach to events dispatched from Flash UI
    UIManager.attachListener( 'uiStop', self )
    UIManager.attachListener( 'uiToggleMusic', self, 'onMusicToggle' )
    
    local ui = uiButtons.new()
    self:attach( ui )
        
    -- Notify Flash UI by dispatching an event
    UIManager.dispatchEvent( 'onRefresh', { version = 104, message = 'hi there!' } )
end
    
function Main:uiStop( e )
    trace( 'Stop the music' )
end
    
function Main:onMusicToggle( e )
    if e.pause then
        trace( 'Pause music' )
    else
        trace( 'Continue music playback' )
    end
end

This allows you to use the rich UI functionality of Flash/ActionScript for your UI layer, while performing game logic and rendering in Lua.

 

Building your application

 

When it comes to creating and deploying your application, that’s a pretty simple process.  Simply select the File->Export menu and select the platform.  You need to have a Mac to build iOS or OSX target.  You need to install the Android or iOS SDK and point Dreemchest at the proper directory before you can export to either platform.  The results of the build (an apk in the case of Android) are in the output subdirectory although I had to do a bit of searching to figure this out.

 

image

 

Conclusion

 

Dreemchest is certainly a young engine, but it has a great deal of potential.  I did experience crashes and a few UI glitches, although the newest release seems a great deal more stable.  I’m actually quite surprised by just how much it did improve in just a couple weeks, this bodes well for the future. This is certainly an engine worth keeping an eye on, especially if you like Lua and are targeting iOS or Android.  It may not be for everyone, if you need source code for example, Moai is a better fit.  But if you are looking for an all in one accessible toolkit, Dreemchest is a good pick.  Of course, it’s free too, so you’ve got nothing to lose by checking it out.

Programming ,

blog comments powered by Disqus

Month List

Popular Comments