28. October 2014

 

A question came up in a comment in the Scene2D part of the LibGDX tutorial series about re-using actions.  You very much can re-use actions, so I decided to do it in post form here.  This entire post is mostly just one large code sample.  It’s just easier to do it here than in comments.  For a greater context of what this code is doing, see the earlier linked tutorial section.

 

Here is a sample showing action re-use.

package com.gamefromscratch;

import com.badlogic.gdx.ApplicationListener;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.Input;
import com.badlogic.gdx.InputProcessor;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Batch;
import com.badlogic.gdx.scenes.scene2d.Actor;
import com.badlogic.gdx.scenes.scene2d.Stage;
import com.badlogic.gdx.scenes.scene2d.actions.MoveToAction;


public class Scenetest implements ApplicationListener, InputProcessor {


   public class MyActor extends Actor {
      Texture texture = new Texture(Gdx.files.internal("badlogic.jpg"));

      public MyActor(){
         setBounds(getX(),getY(),texture.getWidth(),texture.getHeight());
      }

      @Override
      public void draw(Batch batch, float alpha){
         batch.draw(texture,this.getX(),getY());
      }
   }

   
   private Stage stage;
   private MyActor myActor;
   MoveToAction moveToOrigin,moveToCenter;

   @Override
   public void create() {
      stage = new Stage();
      myActor = new MyActor();

      myActor.setPosition(Gdx.graphics.getWidth()/2 - myActor.getWidth()/2,
            Gdx.graphics.getHeight()/2 - myActor.getHeight()/2);
      
      moveToOrigin = new MoveToAction();
      moveToOrigin.setPosition(0f, 0f);
      moveToOrigin.setDuration(2f);
      

      moveToCenter = new MoveToAction();
      moveToCenter.setPosition(Gdx.graphics.getWidth()/2 - myActor.getWidth()/2,
            Gdx.graphics.getHeight()/2 - myActor.getHeight()/2);
      moveToCenter.setDuration(2f);

      myActor.addAction(moveToOrigin);
      stage.addActor(myActor);
      Gdx.input.setInputProcessor(this);
   }

   @Override
   public void dispose() {
   }

   @Override
   public void render() {
      Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
      stage.act(Gdx.graphics.getDeltaTime());
      stage.draw();
   }

   @Override
   public void resize(int width, int height) {
   }

   @Override
   public void pause() {
   }

   @Override
   public void resume() {
   }


   @Override
   public boolean keyDown(int keycode) {
      if(keycode == Input.Keys.NUM_1)
         if(myActor.getActions().contains(moveToOrigin,true)) {
            // this is "A" currently running action, do nothing
            // If you wanted you could restart the action which 
            // would cause the duration to start over, like so:
            moveToOrigin.restart();
            // This action will now have a 2 second tween between 
            // its current location and target
         }
         else {
            moveToOrigin.reset();
            myActor.addAction(moveToOrigin);
         }
      if(keycode == Input.Keys.NUM_2)
         if(myActor.getActions().contains(moveToCenter,true)) {
            // this is "A" currently running action so do nothing
         }
         else {
            moveToCenter.reset();
            myActor.addAction(moveToCenter);
         }
      return false;
   }

   @Override
   public boolean keyUp(int keycode) {
      return false;
   }

   @Override
   public boolean keyTyped(char character) {
      return false;
   }

   @Override
   public boolean touchDown(int screenX, int screenY, int pointer, int button) {
      return false;
   }

   @Override
   public boolean touchUp(int screenX, int screenY, int pointer, int button) {
      return false;
   }

   @Override
   public boolean touchDragged(int screenX, int screenY, int pointer) {
      return false;
   }

   @Override
   public boolean mouseMoved(int screenX, int screenY) {
      return false;
   }

   @Override
   public boolean scrolled(int amount) {
      return false;
   }  
}

When you run this code, the graphic will start at the center of the screen and move towards the origin, with a total duration of 2 seconds.  If you press the 2 key, it will start an action to move back to the center of the screen.  Pressing 1 will move back to the origin.  Pressing 1 while a moveToOrigin is active will cause that action to restart, basically resetting the total duration back to 2 seconds again, just from your current position.

 

The only things to really be aware of here are that an Actor getActions() will only return actions that are currently run.  When the action is finished, it is removed from the Actor.  The other thing of note is, although you can reuse an Action, you will have to reset() it before you can add it again, or it will already be over.  If it is currently run, calling restart() has the same effect as resetting.

Programming , ,

26. October 2014

 

As I mentioned earlier in the introduction to Codea, it does not support Spritesheets out of the box. I also mentioned earlier that it was a fairly simple thing to add. In this tutorial I am going to show how I created a class in Codea for enabling sprite sheets, which can also serve as a bit of an introduction to non-trivial Codea development.

 

A spritesheet is simply a number of sprite graphics that have put together into a single image.  This often results in better performance because of more efficient memory usage, as well as quicker load times and easier asset management.  There area  number of spritesheet creation tools such as TexturePacker which I discussed how to use here and here.  I am also using the spritesheet graphic mentioned in this post.  It’s important to realize that tools like TexturePacker can create very tightly packed sheets that rotate textures to fit them in best.  In this case however, we are expecting our textures to be arranged in a simple grid pattern.

 

Let’s jump right in to Codea and create a new project.  At the home screen simply click the Add New Project button shown below:

IMG 0280

 

In the resulting dialog, name your project, I’m going with SpritesheetDemo.  When done, click Create.  In my case the create button is slightly bugged, in that case, click slightly to the left of it.

IMG 0283

 

This will now bring you to the main code editing page.  It will start with the following simple “Hello World” code:

 

-- SpritesheetDemo

 

-- Use this function to perform your initial setup

function setup()

   print("Hello World!")

end

 

-- This function gets called once every frame

function draw()

   -- This sets a dark background color 

   background(40, 40, 50)

 

   -- This sets the line thickness

   strokeWidth(5)

 

   -- Do your drawing here

 

end

 

 

What we want to do now is add a new class for our Spritesheet, simply click the + icon in the top right corner of the Codea screen:

IMG 0279

 

Now select Create New Class

IMG 0278

 

In the text field, enter Spritesheet as the name:

IMG 0281

 

It will start with an empty class definition, we will replace it will this code:

Spritesheet = class()

 

function Spritesheet:init(img,x,y,rows,cols,frameWidth,frameHeight,frame,totalFrames)

   self.x = x

   self.y = y

   self.frame = frame

   self.totalFrames=totalFrames

 

   self.frameWidth = frameWidth

   self.frameHeight = frameHeight

   self.frameRows = rows

   self.frameCols = cols

   self.frameSize = vec2(self.frameWidth,self.frameHeight)

 

   self.counter = 0

 

   self.mesh = mesh()

   --self.texture = img

   self.mesh.texture = img -- self.texture

   self.mesh:addRect(0,0,self.frameWidth,self.frameHeight)

end

 

function Spritesheet:draw()

 

   self.counter = self.counter + DeltaTime

   if self.counter > 1/30 then

 

   self.frame = self.frame + 1 

   if self.frame > self.totalFrames then

       self.frame=0

   end

 

   self.x = self.x -1

 

 

   colUnit = 1/self.frameCols

   rowUnit = 1/self.frameRows

 

   row = math.floor(self.frame / self.frameRows)

   col = math.floor(self.frame % self.frameCols)

 

   self.mesh:setRectTex(1,

   col * colUnit,

  ( 1-rowUnit) - row * rowUnit,

   colUnit,

rowUnit)

 

       self.mesh:setRect(1,self.x,self.y,self.frameWidth,self.frameHeight)

 

    self.counter = 0

    end

 

   self.mesh:draw()

end

 

function Spritesheet:touched(touch)

 

end

 

A quick explanation of what the above code does.  First off, you create a Spritesheet by passing in the image to use for the sheet, the x and y coordinates to draw the individual sprite at, the number of rows and columns in your sprite grid, the width and height of each row and column, the frame to start on as well as the total number of frames in the sheet.  The rest of the init() method is mostly about storing these values.  The key call is addRect() which you can think of as creating a viewport into the sprite sheet, so we can view a single sprite.  The critical part is we create a mesh.  This is a quad that we apply our texture to.  In the draw() method you will see why this is important.

 

The draw() function has a lot of functionality built in that you obviously wouldn’t want in a more generalize Spritesheet class.  It does however show you how to display a single frame within the sheet and to iterate through each frame.  First we update our internal counter by DeltaTime, which is the amount of time since the last frame was drawn.  We are animating at a fixed rate of 30hz (obviously something you would want to change ), and each time 1/30th a second elapses, we move on to the next frame, unless its the last frame of animation, in which case we go back to first frame.

 

It’s all of the following bit that is the core of how we make the sprite sheet work.  We have created a mesh and applied the image texture to it.  Obviously though, that texture has a number of sprites on it.  What we are doing is finding the coordinates of our current frame of animation within the mesh.  The critical part here is mesh does not use pixel coordinates!  Instead it uses standard GL device coordinates ( similar to UV coordinates ), that start at 0 and go to 1.  The coordinate (0,0) is the bottom left corner of the texture, while (1,1) is the top right.  So we have to map our texture coordinates to pixel coordinates within the image.  This is also a challenge since our frames of animation start at the top left, not bottom left.  This is why we do (1-rowUnit).  In simpler English, colUnit and rowUnit convert from pixel sizes to fractions of 1.0.  For example, if we have 5 columns, each column is then 0.2 in width.  Once we have figured out the location of our individual frame in texture space, we set it using setRectTex().  Finally we set our elapsed time counter back to 0 then draw our updated mesh using mesh:draw().

 

Now let’s take a look at how we actually use spritesheet in code:  Go back to your Main and alter it like so:

 

 

function setup()

   local img = readImage("Documents:birds")

   bird = Spritesheet(img,WIDTH,HEIGHT/2,5,5,240,314,0,21)

end

 

function draw() 

   background(40, 40, 50)

   bird:draw()

end

 

function touched(touch)

   bird:touched(touch)

end

 

Here we simply load our spritesheet from the local pictures ( or use dropbox, wherever you wish ).  We then create a Spritesheet passing in the image, as well as the parameters that describe the sheet.  Draw and touched aren’t called automatically, so each time we get a draw or touched call in our app, we simply call our sprite’s draw and touched functions.

 

When you run the code you should see ( assuming you used the same image I did that is! ):

IMG 0275

 

If you are curious how I got an animated gif of a playing application out of Codea and onto this site, there is a neat bit of functionality built into Codea.  You can record a video of your game running in the run screen of Codea using this button:

IMG 0282

 

As you may be able to guess, I then used the iPad app PicPlayPost to convert to animated gif.  It did a solid job and produced a small file, but it also stripped away all of the colour!  So instead here it is exported as MP4 and created with my ole trust Gif Brewery:

AnimatedBird

 

So that’s a simple project in Codea.  Next up I’m going to start looking at Vector graphics instead of sprites.

Programming , ,

24. October 2014

 

On a daily basis I use dozens of different programming languages.  Some languages are certainly better than other languages at certain tasks, while other languages truly shine on certain platforms.  Some languages are more portable than others, others are more customizable while some can be faster.  All that said, when all other things are equal and I need to just pick a language, the one I go to is generally C#.  C# just strikes that right balance for me, straddling the line between low level and productivity, convenience and speed, functional and procedural, for me at least.  This news then is welcome, for me at least. :)

 

Xamarin, the maker’s of Mono, a cross platform open source version of the .NET runtime and framework (Perhaps most famously known as the language technology that underpins Unity)  have announced they are bringing it to Unreal Engine.  Here are some of the features and benefits of Mono for Unity:

 

Hot Reload

 

We fully support Unreal Engine's Hot Reload functionality.

This means that whenever you rebuild your C# code in Xamarin Studio, your changes are immediately reloated into the Unreal Editor. The changes are also reflected with running games in the editor, so you can quickly iterate on your design.

On fast machines, the process of rebuilding the C# code and reloading it live takes less than a second. It feel instantaneous.

 

Xamarin Studio

While hard core hackers are happy editing their game code with vi or emacs and have the hot reload functionality do all the work for them, we have also provided a nice integration with the MonoDevelop (and Xamarin's branded version, Xamarin Studio).

It provides a first-class IDE with rich, accurate code completion, and powerful refactoring and analysis tools.

 

Debugging

Full support for C# debugging is included. Simply launch your game from Xamarin Studio as a standalone editor or mobile preview process, and it will connect to the runtime debug engine, giving you full access to a rich suite of abilities to inspect and debug your code.

Seamless Blueprint and Editor Integration

Your C# classes that are exposed to Unreal Engine are fully accessible from Blueprint and the Unreal Editor, just like Blueprint-accessible C++ classes.

You can continue using Blueprint for simple logic and use C# when things get more complicated.

And you can consume your C# classes from Blueprint.

 

Mixed C#/C++/Blueprint Solutions

The same tool that we use to generate bindings to Blueprint-exposed Unreal Engine APIs is integrated into Unreal Build Tool, and will automatically generate bindings to all of your Blueprint-exposed C++ gameplay code and engine modifications.

 

Native Access

In addition to the automatically generated bindings to Blueprint-exposed Unreal C++ code, the Mono runtime allows accessing any native APIs, including custom C/C++ code and the native platform API.

You can manually bind C APIs using Platform Invoke services, or use CppSharp to generate bindings to C++ APIs.

 

Async Programming

The Getting Started tutorial shows the low-level approach to defining behaviors, but this approach can become cumbersome when defining more complex behaviors and AI. Luckily, this task can be simplified with async programming, a C# compiler feature that rewrites what appears to be linear code into a state machine.

For more details about how this helps writing complex gameplay logic, see our overview of async programming.

 

API Profile

The Mono Mobile Profile is the core API profile in the support for Unreal Engine.

The Mono Mobile Profile removes a number of bloated .NET features including System.Configuration support from the Base Class Libraries. This is the same API profile used by Xamarin's Android, iOS and Mac products.

Note: The Mobile Profile is not ABI compatible with existing assemblies compiled for a different profile (like the .NET desktop, Silverlight or Windows Phone). You mustrecompile your source code to generate assemblies targeting the Mobile profile.

A full list of the assemblies in our Mobile framework profile can be found here.

 

Portable Class Libraries

You can use Portable Class Libraries with Xamarin's Unreal Engine support. This allows the same binary library to be shared across a wide range of platforms without code modifications.

To learn more about using Portable Class Libraries with Xamarin, read our Introduction to Portable Class Libraries document.

 

There are a couple limitations.  It’s based on .NET up to 4.5, with a smattering of .NET 5 features.  Well, anync, which is frankly the .NET 5 feature.  Perhaps the biggest limitation is it only has access to code from the Blueprint API.  Given that the Blueprint API has access to just about everything C++ does, this isn’t perhaps the limitation it sounds like.  If you want to make more C++ accessible to .NET you need to use CppSharp.  Additionally, Unreal AND Mono need to be available on the targeted platform, although frankly, Mono is available just about everywhere these days.  However, right now only Windows and Mac are supported, with other platforms under development.

 

Oh yeah, there is of course one other big side effect… money.

 

To redistribute code written with Mono for Unreal Engine, you must have a commercial license to the Mono runtime. These licenses are available from Xamarin for Mac, Android and iOS online, and you can request Windows licenses through support.

 

This of course is completely reasonable.  People make their money selling software, so obviously they have to sell their software.  That said, I’ve always found Xamarian’s licensing to be a bit awful.  There are almost unique in the development world for not offering a (real) free version for non-commercial development and this is a huge mistake IMHO.  The lack of a free edition makes open source software around their tools pretty much non-existent.  Of course you can open source work made with Xamarian tools, but good luck building a community around a commercial only development product.

 

That said, this is still an interesting development and one more feather in Unreal Engine’s cap.  Given that Unity is moving away from Mono and developing their own runtime, it’s not entirely shocking that Xamarin made this move.  It is somewhat ironic that the Unreal Engine .NET runtime will be substantially newer and more complete than Unity’s!

News , ,

22. October 2014

 

 

In this tutorial we are going to look at loading and using Tiled TMX maps.  Tiled is a free, open sourced map editor, and TMX is the file format it outputs.  You basically use it to “paint” levels using one or more spritesheets containing tiles, which you then load and use in your game.

 

Here is Tiled in action, creating the simple map I am going to use in this example:

image

 

By the way, I downloaded the tile graphics from here.  Additionally, you can download the generated TMX file we will be using here.

 

I am not going to go into detail on using the Tiled editor.  I actually covered this earlier here.  For Phaser however, just be certain you export as either JSON or CSV format and you should be good to go.

 

Now let’s look at some code to load the tile map.

 

 

/// <reference path="phaser.d.ts"/>
class SimpleGame {
    game: Phaser.Game;
    map: Phaser.Tilemap;
    
    constructor() {
        this.game = new Phaser.Game(640, 480, Phaser.AUTO, 'content', {
            create: this.create, preload:
            this.preload, render: this.render
        });
    }
    preload() {
        this.game.load.tilemap("ItsTheMap", "map.json", null, Phaser.Tilemap.TILED_JSON);
        this.game.load.image("Tiles", "castle_0.png");
    }
    render() {

    }
    create() {
        this.map = this.game.add.tilemap("ItsTheMap", 32, 32, 50, 20);
        this.map.addTilesetImage("castle_0", "Tiles");

        this.map.createLayer("Background").resizeWorld();
        this.map.createLayer("Midground");
        this.map.createLayer("Foreground");
        
        
        this.game.camera.x = this.map.layers[0].widthInPixels / 2;
        this.game.camera.y = 0;

        this.game.add.tween(this.game.camera).to({ x: 0 }, 3000).
to({ x: this.map.layers[0].widthInPixels }, 3000).loop().start(); } } window.onload = () => { var game = new SimpleGame(); };

 

And when you run it… assuming like me you are using Visual Studio 2013 you will probably see:

image

 

Hmmmm, that’s not good.  Is there something wrong with our tilemap?  Did we make a mistake?

 

Nope… welcome to the wonderful world of XHR requests.  This is a common problem you are going to encounter over and over again when dealing with loading assets from a web server.  If we jump into the debugger, we quickly get the root of the problem:

 

image

 

Let’s look closely at the return value in xhr.responseText:

Ohhh. it’s an IIS error message and the key line is:

The appropriate MIME map is not enabled for the Web site or application.

Ah…

 

See, Visual Studio ships with an embedded version of IIS called IIS Express, and frankly, IIS Express doesn’t have a clue what a JSON file is.  Let’s solve that now.  If you created a new TypeScript project in Visual Studio, it should have created a web.config file for you.  If it didn’t create one and enter the following contents:

<?xml version="1.0" encoding="utf-8"?>
<!--
  For more information on how to configure your ASP.NET application, please visit
  http://go.microsoft.com/fwlink/?LinkId=169433
  -->
<configuration>
  <system.web>
    <compilation debug="true" targetFramework="4.5" />
    <httpRuntime targetFramework="4.5" />
  </system.web>
  <system.webServer>
    <staticContent>
      <mimeMap fileExtension=".json" mimeType="application/json" />
    </staticContent>
  </system.webServer>
</configuration>

 

Now the code should run without error

I should take a moment to point out that this is an entirely Visual Studio specific solution.  However, this particular problem is by no means limited to IIS Express.  I documented a very similar problem when dealing with WebStorm’s integrated Chrome plugin.  If your loadJson call fails, this is most likely the reason why!  Well that or you typo’ed it. :)

 

Ok, assuming everything is configured right,now we should see:

 

 

By the way, you may have to click on the to get it to start rendering.

 

Most of the loading code should look pretty familiar by now, Phaser is remarkably consistent in its approach.  There are a few things to be aware of though from that code.  First, the order you create layers in is important.  In Tiled I created 3 layers of tiles.  A solid background layer named “background”, a middle layer with most of the tiles in it called “midground” then a detail layer for the topmost tiles named “foreground”.  Think of rendering tiles like putting stickers on a flat surface… the front most stickers will obscure the ones that are behind them.  The same is true for tiles.  There are other options in tiled for creating foreground and background layers, but I stuck with normal tile layers for ease.  Just no that more efficient options exist.

 

The next thing to be aware of is when I called addTilesetImage, that is the same image filename that I provided to Tiled.  It is important that you use the same graphics files and names between Tiled and your code.  The next thing worth noticing is the call to resizeWorld() I made when loading the first tiled layer.  This simply set’s the world’s dimensions to be the same size as the tile layer you specified.  Since all the tile layers are the same size, you could have called it on any of them.  Finally, we made a simple tween that pans the camera from one end of the level to the other and back.

 

There is more to touch on with tiles, but I will have to cover that in later post(s).

 

Programming , , , ,

20. October 2014

 

Now we are going to look at available raster graphics programs available on iPad.  While this post is part of an over all series about creating a game using only an iPad, this post should be of use to anyone looking to create art in general.  The iPad ( and other tablets ) are becoming increasingly viable ways of creating art, especially 2D art.  One major reason for this is cost.  An iPad is generally cheaper than a PC/Mac + graphics tablet, but it’s software costs where this really becomes obvious.  For example, the desktop version of Photoshop ( before it went subscription ) used to cost about $800.  The tablet version of Photoshop… $10!  Another desktop/tablet example is ArtRage, which ( although vastly cheaper ) is available at $50 on Desktop, it is only $5 on iPad.  Granted, they aren’t identical products, and often the iPad version has less functionality, but I tend to find it has all the functionality I generally need.  You mileage may vary.

 

So we are going to take a look at some of the Raster and Vector packages available on iPad.  Raster and Pixel mean basically the same thing, although “Pixel Art” has often come to represent a very specific style, with fat chunky pixels like from the 8 and 16bit era.  We will also look at two options aimed specifically at this style.  We will also look at Vector graphics packages, which allow you to define brush strokes mathematically, making for nice scalable graphics. 

 

I have also done a video quickly showing each application running, so you can have a better idea what the experience is like.  I only spend a couple minutes with each, but a few minutes is often all you need to decide if something is right for you or not!  All testing was done on a iPad Air, so if your device is slower, your experience may not be as good.

 

This video is a quick demonstration of every application mentioned below.  You can view it directly here.

 

 

Ok, let’s jump right in:

 

Photoshop Touch

iTunes Link

Cost: $9.99

Screenshot(s):

Photoshop

 

Comments:

Be careful when it comes to the Photoshop products, Adobe have released a number of Photoshop branded iOS projects and most of them are focused on photo manipulation and most useless to you.  The version you want is Photoshop Touch.  This is the mobile version of the venerable desktop Photoshop application.  While certainly stripped from it’s desktop counterpart, it is still impressively capable.

One immediately useful feature is the allowed canvas size.  Earlier versions where limited in canvas size, while now you can successfully create a 4096x4096 texture, which is the reasonable upper limit of what you will ever want to create.  I will admit though, at this size things can get a bit sluggish at times, although the painting experience is just fine, running tools like magic wand select or applying fx can bring up a wait logo.  Speaking of which, that is two areas where Photoshop really shines compared to it’s peers.  The selection tools are great, including a magic wand, scribble selection, polygon, lasso, etc select and deselect tools.

Tools are solid but not exceptional.  Feedback is great, there is no lag even on large files.  Navigation takes a bit to get used to, but is quick once you know what you are doing.  It has a few standout tools, such as the clone and heal brushes, which are somewhat rare.  Otherwise you are left with paint, burn, smudge, spray and erase as your primary art tools.  You do however have a ton of fine control over each tool, such as brush patterns, angle, scatter, size, flow and transparency.  You have to set it up yourself, but you can emulate basically any brush type you desire.

Of less use to game art, but still occasionally valuable, Photoshop Touch has 16 built in adjustments like Black&White, Shadow/Highlight, etc.  There are also 30+ filters built in, such as Sharpen, Drop Shadow, Blur, Glass, Comic, Watercolor, Sephia, etc.  There are also an impressive number of manipulation tools tucked away in here for cropping, scaling, rotating, transforming(warping) and fairly solid text tools as well.

Where Photoshop Touch really shines is layers.  You can have several layers, either new, cloned or imported from existing media.  Layer control is solid making it easy to move layers up, down, merge and delete as well as altering the opacity.  Additionally layers can be normal, darken, multiply, lighten, overly, subtracted, etc.  Fx can be limited to an individual layer. 

While Photoshop Touch may not be the program you create your art in, it should probably be in your toolbox for the sheer amount of flexibility it gives you.  In terms of alterations and manipulation of images, it can’t really be touched.  The selection, copy/paste, import and layering tools are easily the best out of any tool I look at.

In terms of getting your work out at the end of the day, unfortunately there is no direct Dropbox integration, but that isn’t really surprising given Adobe have their own cloud storage system, Creative Cloud.  In addition to their cloud offering, you can also save to the local photo roll.  There is however a Share option, allowing you to export the file ( as JPG, PSD, PSDX or PNG ) to just about any iPad application ( including dropbox ) or to email, printers, etc.  However the process is remarkably slow and sometimes simply doesn’t work.  At the end of the day, you can get just about anything in and out of Photoshop Touch that you would expect, but it can be awfully slow at times.

I suppose it’s fair to point out, it’s actually Photoshop Touch I used to resize and export the screenshots from my iPad to my Mac while creating this post.  It’s just a handy tool to have.

 


 

Autodesk Sketchbook Pro

iTunes Link

Cost: $3.99 for Pro Tools

Screenshot(s):

AutodeskSketchbook

 

Comments:

This product is a bit difficult for me to cover, as the version I have doesn’t actually seem to exist anymore.  At some point they moved from a premium iPad only product (Sketchbook Pro) to an freemium model, where you can download the base (Sketchbook Express), then for $3.99 unlock the premium tools.  I believe at the end of the day, they become the same product, but if there are minor differences, I apologize now.  As I am not entirely certain what is in the free vs pro edition, the below will be describing the complete purchased product.

Sketchbook is exactly what the name suggests, a virtual sketchpad.  It’s an impressive one at that.  It’s got a minimal interface that get’s out of your way ( all of the things you see in the above screenshot are brought up by pressing the circular icon.  Let go and it’s just you and your drawing. Drawing tools are pretty typical with pen, pencil, market, highlighter, erase, smudge and airbrush available, plus the ability to choose custom brushes/stamps from probably 100+ presets, including common pencil type (2H, 8B, etc) and oddly enough, so clip art.  Responsiveness while drawing is instant.  Using a quick pop up tool you are able to alter your brushes dimensions and opacity with a single touch.  One nice feature, lacking from many similar products, is the ability to draw lines and shapes, although curves didn’t seem to work.

There are a couple unique to Sketchbook features, of varying levels of usefulness.  There is a symmetry draw mode, enabling you to draw mirrored about a centre point.  You can also do time lapsed recording and collaborative sketching with someone else with their own copy of Sketchbook.  Sketchbook also has decent text creation abilities built in.  Most importantly (to me), Sketchbook also has layer support, although nowhere near that of Photoshop Touch.  Even just a single layer to enable tracing for animation is invaluable. 

You can export from your gallery directly to the local photo gallery, to iTunes, email, etc… as well as directly to Dropbox.  You can create images up to 1800x2400 in size, although the size of image limits the number of layers.  A 1800x2400 image can for example have 4 layers, while a 768x1024 image can have up to 18 layers.  The largest image you are able to create is 2830x2830.  No idea why it stops there…  Even at that size, performance remains smooth.

Sketchbook is a great product for creating sketches, the brushes are natural, performance is good and tools are complete enough to recreate most anything.  The interface is faster to navigate than Photoshop Touch, but it has a great deal less functionality, with absolutely no filters, effects, selection tools and minimal layer functionality.  For drawing however, I would take it over Photoshop Touch every day.


 

Art Rage

iTunes Link

Cost: $4.99

Screenshot(s):

ArtRage

 

Comments:

This is the most applicably named application I have ever encountered!  It’s an amazing application for creating digital art, and it is horrifically rage inspiring!  ArtRage attempts to recreate real world art process digital, and does an incredibly good job of it.  You can choose your paper type (grain), metallic-ness then go to town using tools like paint, roller, trowel, crayons, markers, pens, erasers, pencils, airbrush and a couple different paint brushes.  For each brush you can set a number of settings specific to each tool such as pressure, thinning etc.  You really can recreate a very “painterly” feel.  So why the rage?

Well that part is simple.  This application lags.  Always lags and I absolutely cannot use it for that reason.  Regardless to the complexity of your scene, your paint brush will always been a half a second behind where you are touching.  Of all the applications I looked at, this one had by far the worst performance.  If you can handle the delay while drawing, this application is certainly worth checking out, especially if you are looking for a natural media look.  I personally cannot get over the lag.

From a technical perspective, Art rage allows a maximum canvas size of 2048x2048.  It supports layers with an absolute ton of blending modes.  There is no manipulation tools for selection, transformation nor any filters or effects.  This is a painting program focused on painting and nothing more.  It however probably does the best job of recreating brushes and paper in the digital world.  It has the ability to export to Dropbox as well as save locally, but not to send to other applications on your iPad.


 

Bamboo Paper

iTunes Link

Cost: Free for Base + up to $3.99 to add tools

Screenshot(s):

BambooPaper

 

Comments:

Made by Wacom, famous for the titular Bamboo tablets.  The free version ships with a pen, then for 99 cents each, or $3.99 for all, you can add tools such as Brush, Crayon, Pencil etc.  It’s got a slick package, good export support (including Dropbox) and does feel like working in a notebook.

That said, it’s simply too limited to be used for much more than sketching.  Lack of layer support, minimal dimension options, no selection tools, filters or advanced brushes.

 


 

Paper

iTunes Link

Cost: Free then up to $6.99 for all tools

Screenshot(s):

Paper

Comments:

Paper is a somewhat famous application, as it has been used in Apple promotional materials.  It is also incredibly basic, basically just trying to mimic the drawing on paper experience.  As you can see from the screenshot above, I only have the free version installed.  For up to $6.99 you can add other art tools like a pencil, marker, paint brush, colour mixer, etc.  Export abilities are limited to save to camera roll and send to app.

The drawing is nice and natural, but it’s too limited to be of much use for game development.  Additionally, it’s price is hard justified compared to similar applications.  Can’t really recommend paper other than for sketching if the minimal interface floats your boat.


 

Skeches

iTunes Link

Cost: Free to start, up to $4.99 for all tools, plus text and layers

Screenshot(s):

Sketches

 

Comments:

Sketches is very similar to Paper and  Bamboo Paper, in that it emulates a classic sketchbook.  However the major exception is, with the premium purchase of $4.99 you gain among other things, layer support.  Additionally the free version includes a complete set of tools, but limits the customizability of each.  It contains all of the same tools as the previous two applications.  The interface can be minimized by swiping aside panels.  Navigation is multitouch based and to be honest is confusing as hell until you get used to it.

You are able to export to a number of formats, including Dropbox.  You can select from a number of paper types, but unfortunately have very little control of resolution of the image, maxing out at that of a Retina iPad.

Of all the sketch based drawing applications, this one was easily my favourite, even with it’s somewhat unnatural navigation interface. 


 

Concepts

iTunes Link

Cost: Free to $6.99 for full toolset

Screenshot(s):

Concepts 

 

Comments:

Of all the applications I’ve covered yet, Concepts is probably the most unique, and in some ways, the most powerful.  Designed for creating sketches for concept art, it comes with several tools you haven’t seen yet.  For example, there is a tool for tracing lines and arcs.  There are snapping tools for snapping to the grid.  Speaking of which, the grid can be turned off, on, and set to a number of different densities and formats, including isometric, which can be invaluable if that is the art style you are going for.  There is full layering support, but they are intended for organization/tracing/layering and not artistic effects.  Beyond transparency, there are no blending options for layers.

Artistic tools are somewhat limited to pens, pencils and markers.  More natural art style would be hard to achieve in this program as a result.  That said, the color system is amazing and emulates COPIC markers, allowing you to create pretty much the same tools that concept artists use.

For precision works, this is hands down the best choice out there.  For drawing striaght edges, lines and curves, only the next option comes close.  For more painterly effects, this is a poor choice.  There is no filter or fx support.  Export support is robust, and actually capable of exporting to DXF ( Autocad ), SVG ( Vector ) and PSD formats.  You can also export as an image to the local camera roll, as well as export to Dropbox and others ( including somewhat shockingly, Adobe’s Creative Cloud ).

If you are doing concept art, or going for a technical look, this is hands down your best choice.

 


 

Adobe Illustrator Draw

iTunes Link

Cost: Free!

Screenshot(s):

 AdobeDraw

Comments:

Adobe make a number of products of a very similar nature, Adobe Ideas, Adobe Lines and Adobe Sketch.  Adobe Draw however ties together the best of each of them and has some very interesting abilities.  By far and away the most important feature is the ability to use an angle or french curve ( like shown above ) to draw straight lines and curves.  The actual drawing features are somewhat limited, mostly pen/pencil style drawing implements.  You can control the brush tip size, colour and opacity and that’s it. There is layer support buts it’s tied to each tool somewhat oddly.  The response is quick, the interface is nice and clean and though limited, the brushes are different enough to be useful.

All that said, this application is free.  It’s good and it’s free.  In some ways the drawing tools are amongst the best available.  The angle/french curve functionality is exceedingly well implemented, much better than the curve support in Concepts, which is the only other program that offers similar functionality.  Export functionality is fairly traditional, you can save to the local camera roll, upload to creative cloud and hit the standard share with targets, including Dropbox.  Unfortunately it seems you have little (no?) control over the canvas size.

I don’t really understand the business model here, but free is a wonderful price.  Be sure to check this one out.

 


 

Inkist

iTunes Link

Cost: Free *for a limited time, seemingly forever

Screenshot(s):

Inkist 

 

Comments:

I will be honest, I had a great deal of trouble navigating my way around this application.  Even saving a file was somewhat perplexing.  In many ways it has an interface like many desktop art packages like GIMP or Paintshop.  That interface doesn’t necessarily work on a touch device.

There is actually a LOT of functionality packed in here, more so than most of the packages listed here, except perhaps Photoshop Touch. There is full layering support, but limited to 3 layers ( I think, who knows whats behind that interface that I couldn’t figure out! ), and all kinds of blending functionality between layers.  Art tools are somewhat limited.  I think everything you need is in here, but accessing it is somewhat of a trick.

That said, it’s listed as free for a limited time, and that was over a year ago.  It doesn’t seem like this application is still being developed, so it’s a completely free option.  For that reason alone you should check it out, the interface might click for you better than it did me.  If nothing else, the price is right!

 


 

Pixel Art Packages

 

Sprite Something

iTunes Link

Cost: $4.99

Screenshot(s):

SpriteSomething

 

Comments:

This application is unique in the list as it is specifically aimed at low resolution ( 8/16bit ) pixel art.  At it’s core it’s a fat bit grid editor.  You draw pixel by pixel, although it does have some handy tools like fill, line drawing, etc. There is also layering ability, but there is no blending between layers, it’s literally just stacked pixels. You work in a massively zoomed in window, but you can preview the end result as you work.  There are also tools for doing frame by frame animation sequences, including onion skinning functionality.  This part of the interface can be a bit clunky.

One very unique thing about sprite something is, it has a simple level editor built in as well.  See the video for more details.  Export is limited to email and local camera roll.  If you are working in fat bit pixel style, this is your best ( and almost only ) option. 

 


Codea

iTunes Link

Cost: $9.99

Screenshot(s):

Codea 

 

Comments:

I’m just mentioning this one for thoroughness.  If you are reading this as part of the overarching iPad game creation tutorial, there is a simple pixel art example “Spritely” built into Codea.  Its another fat bit grid editor for pixel art.  It’s very simple but may be enough for you if you have simple requirements.

Obviously not recommended to non-Codea users.

 


Vector Graphics Packages

 

Vector graphics applications work a bit differently than raster packages we described above ( except perhaps Concepts which is a cross between Raster and Vector graphics ).  Raster applications work on a pixel by pixel basis.  Vector graphics on the other hand work on mathematic formulas representing each brush stroke.  This gives you a bit less fine control over the end results, but allows you to scale up or down to any graphic resolution you want.

 

Inkpad

iTunes Link

Cost: Free and Open Source

Screenshot(s):

 Inkpad

Comments:

Completely free and open source, Inkpad is a powerful vector graphics package.  If you’ve ever used Inkscape on a PC, you know what you are in for.  You draw using paths, manipulate curves either straight line or bezier for curved edges and using simple geographic shapes, build, color and layer them to create more complex images. 

Inkpad has full layer support, although they don’t really effect each other like in raster packages.  You can however bring in a standard graphic as a background or to trace over.  Inkscape supports saving as an image locally or exporting as PDF or SVG.

Once again, it’s completely free.  Free is nice.

 

iDraw

iTunes Link

Cost: $8.99

Screenshot(s):

IDraw

 

Comments:

iDraw has one of those iNames iAbsolutely iHate, but don’t judge the package by it’s name.  I absolutely love this package and strongly recommend it to anybody reading this that wants to work with vector graphics.  This application works very similar to Inkpad, except with more functionality, more polish and a higher price tag.  I have struggled in the past with vector graphics applications such as Inkscape ( unwieldy ) and Illustrator ( overwhelming ) and iDraw is the first one that just “clicked” for me.  Once again, the basic concept remains the same, you draw shapes using lines (paths), fill those paths with colors or gradiants, and layer them to make more complex shapes.  One major difference between this and Inkpad is the free form drawing tools, that allow you to use it much more similar to a traditional drawing package.

iDraw is also available as a complete application on Mac and files are interchangeable.  This page has full layer support and is capable of saving directly to Dropbox.  Files can be exported as iDraw, PDF ( very very very useful with Codea as we will soon see ), SVG, PSD, PNG and JPEG, with resolutions of 72, 144 or 300dpi.

 

 

Summary

 

This is only a small subset of graphics packages available on iPad, but does represent a large cross section of them, as well as featuring most of the “big names”.

 

Myself, if I were to only be able to keep a couple applications, my personal choices would be:

  • Photoshop Touch — for image manipulation, modification, effects and some creation
  • iDraw — Vector graphics made easy
  • Adobe Draw — Great sketching app, excellent line and curve support, completely free
  • Sketches — Most versatile drawing app with different brushes like watercolour, paint, etc
  • Concepts — Perfect for technical drawings, similar to Adobe Draw but much more technical, Copic integration
 
If I had absolutely no budget available, I would most certainly recommend people download:
 
  • Sketches — For all your sketching needs, I’d pay for it, so free is awesome
  • Inkpad — Powerful vector graphics, completely free
  • Inkist — The interface is rather awful, but it gives you a lot of editing functionality, completely free
 
All told, that represents under 20$ worth of purchases and provides a level of power way taken together that exceeds any desktop application at many times the price.  Even for a total spend of $0, you can end up with a remarkably complete 2D art package.

Art , ,

Month List

DisqusCommentsSummary