Subscribe to GameFromScratch on YouTube Support GameFromScratch on Patreon

2. January 2017

 

In our previous tutorial in the BabylonJS Tutorial Series we covered positioning a camera in our world.  There were still a few fundamental components missing, the top of which is lighting which we are going to cover today.  Lights are used to, predictably enough, illuminate your scene.  They interact with the color and materials on your various entities that compose your scene.  There are multiple different light types available in BabylonJS including the Point Light, Directional Light, Spot Light and Hemispherical light.  A point light is a single light source that radiates in all directions, like a naked lightbulb for example.  A directional light in a radiates just in the direction it is pointed and it goes on forever with no fall off basically illuminating everything in its path regardless to distance.  A spot light is similar to a directional light but it does fall off over a given distance and is cone shaped.  A flashlight is a classic example of a spot light, as of course is a spot (or search) light!.  A hemispherical light is generally used to represent an ever present ambient light source, the sun being perhaps the most common example.  You can also emit light from textures using their emission property, but we will cover that at a later point.  In this tutorial we are going to implement a point and a spot light.

 

There is an HD video version of this tutorial available here.

 

Let’s start with a point light.  It’s a simple light that radiates from a single point (thus the name) in all directions.

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Title</title>
    <script src="../Common/Lib/babylon.max.js"></script>

    <style>

        #canvas {
            width:100%;
            height:100%;
        }
    </style>
</head>
<body>
<canvas id="canvas"></canvas>
<script>
    window.addEventListener('DOMContentLoaded', function(){
        var canvas = document.getElementById('canvas');

        var engine = new BABYLON.Engine(canvas, true);

        var createScene = function(){
            var scene = new BABYLON.Scene(engine);
            scene.clearColor = new BABYLON.Color3.White();

            var box = BABYLON.Mesh.CreateBox("Box",4.0,scene);
            var camera = new BABYLON.ArcRotateCamera("arcCam",
                    BABYLON.Tools.ToRadians(45),
                    BABYLON.Tools.ToRadians(45),
                    10.0,box.position,scene);
            camera.attachControl(canvas,true);

            var light = new BABYLON.PointLight("pointLight",new BABYLON.Vector3(
            0,10,0),scene);
            light.diffuse = new BABYLON.Color3(1,0,0);


            scene.actionManager = new BABYLON.ActionManager(scene);
            scene.actionManager.registerAction(
                    new BABYLON.ExecuteCodeAction({ trigger:
                            BABYLON.ActionManager.OnKeyUpTrigger, parameter: " " 
                            },
                            function () {
                                light.setEnabled(!light.isEnabled());
                            }
                    ));

            return scene;
        }

        var scene = createScene();
        engine.runRenderLoop(function(){
            var light = scene.getLightByName("pointLight");
            light.diffuse.g += 0.01;
            light.diffuse.b += 0.01;
            scene.render();
        });

    });
</script>
</body>
</html>

 

There are a couple things illustrated in this example.  Creating a point light is done by calling new BABYLON.PointLight(), passing in the ID of the light, the position of the light in the world and finally the scene in which the light exists.  You can set the color of the light by setting it’s diffuse property, in this case we set it to full red only.  You will notice this example also shows a new concept in BabylonJS, the ActionManager.  This is a way of wiring code to specific events.  In this case we add some code that will be fired when the space key is pressed.  That function simply turns off and on the light source by calling setEnabled() passing a true or false value.  In the render loop we also slowly increase the lights green and blue components, so you can see the effect of diffuse lighting on the scene.  When you run this code you should see:

GIF

 

Lights are implemented as part of the GLSL shader process and the active lights in the scene are passed to each StandardMaterial in the scene.  By default the standard material is limited to a maximum of four active lights.  This value can be overridden using the maxSimultaneousLights property of the StandardMaterial, although this may have some impact on performance, especially on mobile targets.

 

Next lets look at implementing a spot light.  As with all things BabylonJS, the process is quite similar:

<script>
    window.addEventListener('DOMContentLoaded', function(){
        var canvas = document.getElementById('canvas');

        var engine = new BABYLON.Engine(canvas, true);

        var createScene = function(){
            var scene = new BABYLON.Scene(engine);
            scene.clearColor = new BABYLON.Color3.White();

            var box = BABYLON.Mesh.CreateBox("Box",4.0,scene);
            var camera = new BABYLON.ArcRotateCamera("arcCam",
                    BABYLON.Tools.ToRadians(45),
                    BABYLON.Tools.ToRadians(45),
                    10.0,box.position,scene);
            camera.attachControl(canvas,true);

            var light = new BABYLON.SpotLight("spotLight",new BABYLON.Vector3(0,
            10,0),new BABYLON.Vector3(0,-1,0),
                    BABYLON.Tools.ToRadians(45), // degrees the light fans out
                    0.1, // falloff/decay of the light over distance
                    scene);

            return scene;
        }

        var scene = createScene();
        engine.runRenderLoop(function(){
            var light = scene.getLightByName("spotLight");
            light.position.y -= 0.01;
            scene.render();
        });

    });
</script>

 

In this example we create the spot light with a call to new BABYLON.SpotLight, passing in the id, position, direction vector, the degrees or arc of the light cone, the rate the light falls off over distance and finally the scene to create the light in.  In this example instead of changing the color of the light each frame, we instead move it slightly.  Run this code and you should see:

GIF2

 

As the light is pulled back the fall off cone is quite prominently displayed.  Of course the lack of textures makes this example more than a bit stark, so that is what we will cover in the next tutorial.

 

The Video

Programming , , , ,

15. December 2016

 

Welcome to the next part in the ongoing Closer Look At game engine series.  The Closer Look series combines a review, overview and getting started tutorial in one and aims to give a developer a good idea ofs2closerlook a given game engine is a good fit for them or not.  Today we are looking at the S2Engine, which is a commercial game engine available for purchase on Steam.  Right off the hop the S2Engine is going to have two major strikes against it for many game developers.  First, it’s Windows only.  Figured I’d get the out of the way right up front as if you are looking to create cross platform games, this is not the engine for you.  Second, it’s commercial and closed source, although the price tag is quite low at around $20USD.

 

As always there is an HD video version of this review available here.

 

Without further ado, let’s jump in to the S2Engine.

 

The Tools

The entire development experience in the S2Engine takes place in the S2EngineHD Editor.  Here is the editor in action running the included sample scene:

s1

 

The S2Engine Editor is absolutely loaded with tools, lets take a guided tour.  First off we have the scene window where you can see a live rendering of your game in action:

sceneoptimized

 

Please keep in mind the fuzziness in the picture above comes from the animated gif process, the real-time viewport looks vastly superior to the image above.  The Scene view is where you place entities in your scene and preview the results.

 

You can switch between the various available tools using the following toolbar:

image

Or via menu:

image

 

The Project Window

image

 

This is where the various assets of your game are organized.  It’s an analog to the underlying file system of your project.  The buttons across the left enable you to filter the various different objects ( Animations, Models, FSMs, etc ).

 

The Class Window

image

 

This is where you can instance various game objects.  Select an object, click Create and then click within the scene to place the entity.  The newly created entity (or a selected entity) can then be configured using the lower Params window, which is context sensitive to the selected object.

 

Terrain Tools

image

 

S2Engine has a full terrain editing system in.  The Terrain tool enables you to interactively edit the scenes landscape (height map).  There are tools for raising/lowering, flattening, stepping and painting terrain as well as drawing roads and vegetation.  The actual editing is done in the scene window:

terrain

 

Model Window

image

 

S2Engine supports 3D animated models of FBX format, simply click the Import button in the Project view:

image

 

There are multiple different panels for configuring models, setting and handling animations, managing joints/bones and even vertex level manipulations.

image

 

There is also an animation panel.

image

This enables you to blend animations together, set and remove animation keys and of course, preview animations.

 

Material Window

imageimage

 

A detailed material system allowing multiple layers.  You can control diffuse and normal maps, UV tilting, lighting properties and more.  You also have control over detailed material attributes like alpha blending, animations, scattering, light emission and more.

 

Special FX

image

 

Fine tuned control over multiple special FX of types weather, post processing and environmental.  Fine tune control over all aspects, including water fx, sky, weather, lens effects, etc.  You also have fine tune control over day/night cycles using a keyframe system:

image

 

Cutscene Tool

image

 

S2Engine has a complete system in place for authoring cut scenes.  Includes a curve editor:

image

 

As well as a detailed timeline:

image

 

Hierarchy

image

This is essentially your scene graph.

 

Font Tool

image

Enables you to create png textures for fonts of varying dimensions with font preview.  Fonts are imported in fnt format created using the BMFont tool.

 

GUI Editor

image

Currently in Beta, there is a UI editor available.  You can create a hierarchy of UI widgets and configure them using the Params class panel.

 

imageimage

Currently supported widgets include button, slider, frame, input box, combobox, label, checkbutton, colorbox, image, listbox, groupbox, tabbox and rangeinputbox.

 

Publishing

When you are complete publishing is a pretty straight forward process.  This is one of the advantages of only supporting a single platform publishing is as simple as choosing a file name, starting scene, main script (entry point) and a few other settings and clicking the Publish button.

image

 

Coding

There are two ways to code in S2Engine.  You can use their own scripting language or the visual FSM (Finite State Machine) visual programming language.  The scripting language has the sc2 extension and has a C like syntax.  You can read the language reference here while the API documentation is available here.  Scripts are simply connected to (and thus control) game objects.  Here is an example script that controls a jeep found in the demo game.

#message TakeControl
#message LeftControl
#message LockWaypoints
#message UnlockWaypoints

#use "engine.wav"

var float acc;
var float steer;
var bool brake;
var bool control;
var float steerAng;
var string steerNode;
var string handsNode;
var float oldsteerAng;
var bool _on;

function void Init()
{
	_on=false;
	control=false;
	steerAng=0.0;
	steerNode="steer";
	handsNode="hands";
	AICreateObject(false,false,205.0,200.0);
	resetNodeFlags("camera","visible");
	resetNodeFlags("hands","visible");
	SetSource(10.0,15000.0);
}

function void PostInit()
{
	SetPerObjectMaterialData(3,0.0);
	resetNodeFlags("light01","visible");
	resetNodeFlags("light02","visible");
	_on=false;
}

function void update()
{
	if(control==true)
	{
		acc=0.0;
		steer=0.0;
		brake=false;
		RotateNode(steerNode,"rgt",-steerAng);
		RotateNode(handsNode,"rgt",-steerAng);
		
		SetSourcePitch((PhysicsGetVehicleRPM()*0.0025)+1.0);
		/*LOG( string(PhysicsGetVehicleRPM()) );*/
		
		if(IsKeyPressed("w"))
		{
			acc=1.0;
		}
		if(IsKeyPressed("s"))
		{
			acc=-0.5;
		}
		oldsteerAng=steerAng;
		if(IsKeyPressed("d"))
		{
			steerAng=steerAng+(frametime);
			steer=-1.0;
		}
		else
		{
			if(IsKeyPressed("a"))
			{
				steerAng=steerAng-(frametime);
				steer=1.0;
			}
			else
			{
				steerAng=0.0;
			}
		}
		if(IsKeyPressed(" "))
		{
			brake=true;
		}
		if(steerAng>=35.0)
		{
			steerAng=35.0;
		}
		if( steerAng<=(-35.0) )
		{
			steerAng=-35.0;
		}
		steerAng=ScalarInterpolate(oldsteerAng,steerAng,(frametime/200.0));	
		RotateNode(steerNode,"rgt",steerAng);
		RotateNode(handsNode,"rgt",steerAng);
		PhysicsVehicleControl(steer,acc,brake);
		
		if(acc!=0.0)
		{
			var vec3 fwdaxis;
			fwdaxis=GetWorldAxis("fwd");
			SendMessageMulti("pushOut",string(fwdaxis),400.0,"null");
		}
	}
	else
	{
		PhysicsVehicleControl(0.0,0.0,true);
		if(ObjectIsInRange("player01",300.0))
		{
			SendMessageSingle("player01","DriveVehicle","");
		}
	}
}

function void message()
{
	if( ReceivedMessage("TakeControl") )
	{
		/* lights control */
		var float tod;
		tod=float(GetLevelParam("TimeOfDay"));
		LOG("tod"+string(tod));
		if( (tod>=18.0) && (tod<=24.0) )
		{
			SetPerObjectMaterialData(3,1.0);
			if(!_on)
			{
				SetNodeFlags("light01","visible");
				SetNodeFlags("light02","visible");
				_on=true;
			}
		}
		if( (tod>0.0) && (tod<6.0) )
		{
			SetPerObjectMaterialData(3,1.0);
			if(!_on)
			{
				SetNodeFlags("light01","visible");
				SetNodeFlags("light02","visible");
				_on=true;
			}
		}
		if( (tod>6.0) && (tod<18.0) )
		{
			SetPerObjectMaterialData(3,0.0);
			ResetNodeFlags("light01","visible");
			ResetNodeFlags("light02","visible");
			_on=false;
		}
	
		/*=======================================0*/
		control=true;
		SetNodeFlags("hands","visible");
		PlaySound("engine.wav",true);
	}
	
	if( ReceivedMessage("LeftControl") )
	{
		control=false;
		ResetNodeFlags("hands","visible");
		StopSound();
		SetPerObjectMaterialData(3,0.0);
		ResetNodeFlags("light01","visible");
		ResetNodeFlags("light02","visible");
		_on=false;
	}
}

 

It’s a straight forward enough language, but I generally prefer that engines use an off the shelf scripting engine instead of rolling their own.  This gives the community access to a much larger source of expertise, sample code and generally is much more time tested and stable.  As you can see from the script above, much of the logic and communication is implemented via message passing.

The majority of in game programming however is done using FSM (Finite State Machines ) via the FSM graph.

s2

If you’ve ever worked in Blueprints in Unreal Engine or Flowgraph in CryEngine you should have a pretty good idea how FSM programming works.  You’re code responds to various events and creates program flows using a series of connecting cables to other states.  Each node can have multiple actions, configured like so:

s3

There are dozens of states available, and new ones can easily be created.

image

Variables are easily created as well.

image

In addition to local variables, parameters and globals can also be defined.

image

 

 

The Documentation, Community and Content

The S2Engine has a decent amount of documentation, reference materials, getting started videos and beginner projects.  There are however a few issues, the first of which is English.  The developers primary language is not English and it shows on occasion in the documentation.  The actual UI is very well translated but some of the documentation  is certainly a tad “Engrish”.  Worse, some of the linked starting videos aren’t in English at all.  I have no issue with non-English videos, but I would recommend not linking them directly from an English localized application.

In terms of actual available documentation, there is a Wiki available here, a very solid reference manual available here, and a series of video tutorials available here.  S2Engine also comes with the beginner scene you’ve seen throughout this review.

The community for S2Engine isn’t huge but there is an active forum.  There is also a Trello bug tracking board available on Trello as well as a few other community options.  One impressive thing about the engine is the engine developer is very responsive to user requests and feedback.

One interesting aspect of the S2Engine is the existence of Content DLC.  These are themed content packs you can download and use in your game.  Currently the only content pack is the Medieval content pack shown in the video below. There is another content DLC pack in the works.

 

 

Conclusion

I pointed out the two biggest negatives to this game engine in the very first paragraph.  It’s Windows only, both for tooling and target platforms.  It’s closed source and commercial.  For many those are going to be big enough deal breakers that nothing else really matters.  For the rest though, is this a worthwhile engine?  For a small team effort, there is a massive amount of functionality included in this engine, it’s capable of some staggeringly pretty results and the workflow, once understood, is pretty accessible to people with limited programming experience.

My biggest recommendation to the developer behind this engine is to make a proper demo available.  What will get people to use this engine over the other options is that they prefer the workflow, the tools, the built in assets, etc.  The lack of a current demo is going to vastly limit the potential audience.  Even with a low price tag, few people will spend money to evaluate an engine and having a previous weaker version of your engine available as the trial is certainly a mistake.  When you go to the download section of the website, you are greeted by this text:

NOTE: The version to be downloaded here (1.4.5) is a previous, very old, FREE BETA version. It is useful just for letting you to view How S2ENGINE HD is organized and How it works. It doesn’t represent the final quality of the 1.4.6 Steam version.

This is quite simply a mistake.  A demo is about selling people on your engine, so having them experience a “very old” version is a bad idea.  Always put your best foot forward when showing an engine.  I would recommend creating a version of the current engine that is full featured but either time locked, save limited or publish limited.  You will have a great many more developers willing to give your engine a try. 

I have found the performance to be a bit inconsistent.  I was running consistently at 70+ FPS, then struggled to hit 15FPS for a while with a ton of UI glitches.  Upgrading to the newest nVidia drivers didn’t help.  Then oddly, switching Optimus to use the integrated GPU, then back to dedicated seemed to fix the problems.  Hopefully these problems are localized to me and not widespread.  I wish the developers used a standard UI toolkit like Qt, as their custom implementation can be a bit buggy or not perform as you’d expect.  I also unfortunately experienced a half a dozen crashes while evaluating the engine, including one while making the video version of this review.

 

The Video

Programming , ,

9. November 2016

BabylonBannerSplattered_thumb[3]

Welcome to the GameFromScratch.com tutorial series covering the BabylonJS HTML5 game engine.  The home page of the series is available here.  For each tutorial in the series there is both a text and video version available.  In this post we are simply going to introduce the BabylonJS engine, the scope of this tutorial series and discuss why you might want to use the Babylon engine and also some of the alternatives available should you decide not to.  If you’ve already decided on using the BabylonJS game engine, jump forward to the next tutorial.

 

BabylonJS Overview

I’m not going to go into a great deal of detail on the functionality included in BabylonJS as I have already featured this game engine in the Closer Look game engine series.  Instead we are going to take a quick top level look at the engine features.

 

Why Choose BabylonJS

So, why is the BabylonJS game engine a good choice for you?

  • Open source (Apache 2 license) and free to use
  • Full featured 3D game library (scene graph, physics, particles, models, sprites, etc)
  • Compatible with most modern WebGL browsers
  • Excellent tooling, including level editor, Unity exporter, model converters
  • Good documentation, samples and other learning materials

You can read the full feature set here.

 

Why Not Choose BabylonJS?

So we mentioned a number of Babylon’s strengths, but why would you *not* choose to use BabylonJS?  Well, beyond the fact you may not like how they implement things the biggest reason all comes down to your priorities.  WebGL performance isn’t on par with desktop OpenGL or even OpenGL ES, so there is a bit of a performance penalty at work here.  While HTML5 applications can be wrapped to run as applications on various mobile devices, again there is a price to be paid, in both performance and labor.

At the end of the day, personally, I think a lot of it comes down to your primary target.  If you are creating a browser game first and foremost, I recommend working in a browser native library such as BabylonJS.  This has the most direct workflow, is easiest to debug, etc.  If on the other hand the browser is just another target for you you are probably better off working in a game engine that also targets HTML5, such as Unreal or Unity.

 

Alternatives to BabylonJS

Shockingly there aren’t actually a ton of HTML5 3D game engines or frameworks like BabylonJS.  The most direct alternatives are:

 

By no means is that an exclusive list, but it does represent some of the most common 3D engines with WebGL as their primary target.

In addition to these engines several 3D engines offer HTML5 as a target including Unreal, Unity, Godot and many more.  The primary challenge with these options is the generated code is often illegible, acting almost identically to a compiled binary.  So if things don’t work right you are dependent on the engine developer to fix things.  Or if you wish to use a native browser feature, you are again dependent on the engine developers to support it in some form.

 

Enough overview, lets jump into the technical details.  I am aiming to keep each tutorial somewhat short and concise, both text and video versions.  Stay tuned for the first tutorial covering getting BabylonJS up and running.

 

The Video

Programming , , , ,

9. September 2016

 

Never in the history of game development have indie developers, or developers in general, had access to such a massive array of resources.  What is perhaps most impressive is that so many of these tools are available at no cost.  That is exactly what this guide is going to look at, and end to end look at freely available tools for all facets of game development. 

There is also a video version of this guide available here.

This guide is not meant to be comprehensive, I don’t want to flood the reader with too much choice.  I do however want to make sure I capture the “greatest hits”, so If I miss a package that you believe should have been included, please let me know!

 

The Definition of Free

First off, this point needs to be addressed right up front.  To use a popular open source expression, I am talking free as in beer, not free as in freedom.  This means that non-open source tools are going to be included, although when source is available I well mention.  The primary criteria is that the developer can get started and develop using the tool completely free.  There might however be a cost after a certain revenue threshold is met (I find this to be an exceedingly fair business model personally) or there might be multiple tiers available, so long as it includes a free tier that enables you to ship and sell your title, it will be eligible for this guide.  It will also include software and tools that have a premium version available, just know that I am referring to the free tier in this guide.

 


Art

In this section we will look at the essential tools for creating game development art, both 2D and 3D.

 

2D

There are a wide variety of 2D imaging applications available, some specialized for developing and animating 2D game sprites, while others are more general purpose image manipulation applications or painter focused.

 

Paint.Net – Windows

An excellent, easy to use general purpose Painting application with hundreds of plugins available, layer support and more.  Frankly this is my goto application for simple image manipulation tasks.  Featured Paint.NET in the GameDev Toolbox series if you want to learn more.  Sadly it is Windows only software.

 

GIMP – Various – Open Source

Pretty much the closest thing to an open source alternative to Photoshop.  It’s a powerful application with an unwieldy UI.  Thankfully they have been focusing heavily on making UI improvements.

 

Inkscape – Various – Open Source

Inkscape is different from other applications on this list as it’s Vector based (instead of bitmap/raster based).  It takes an approach similar to Adobe Illustrator or Flash and is very useful for creating resolution independent graphics.

 

Krita – Linux/Mac/Windows – Open Source

Krita is an open source application that is focused on digital painting, similar to commercial products like Corel Painter.  In recent releases however it has been extended to add animation and text support, making it more and more useful for game development.

 

ASESprite – Windows/Mac/Ubuntu

This is app is dedicated to creating and animating 8/16bit style sprites.  Supporting painting, layers, onion skinning, fixed color pallet, sprite sheet generation and more.

 

GratfX2 – Various – Open Source

Once upon a time there was a program called Deluxe Paint and it was responsible for art creation for 99% of games developed.  GrafX2 is an open source implementation of that application.

 

Piskel – Mac/Linux/Windows/Web – Open Source

Piskel is another pixel art oriented image editor, although this one is somewhat unique in being usable in the browser, with offline versions available for download.  Supports layers, palletes, animation frames and more.

 

JPixel – Various

Not technically free, it’s a name your own price application, however that price can be $0.  It’s a pixel art application with support for animations, tilesets, color palettes and more.

 

GraphicsGale – Windows

The free version of this application is mostly just limited in what file formats it supports for export.  Sadly it is Windows only.  Offers pretty much every feature you would expect from a pixel graphics oriented application.

 

ShoeBox – Adobe Air

ShoeBox is an image/sprite/texture manipulation tool.  Useful for creating textures from existing images, extracting an animation into a sequence of sprites, creating 9patch images and more.  This is a utility and not a graphics creation package like many in this list.  It requires the Adobe Air runtime to run.

 

TexturePacker – Mac/Windows

TexturePacker by Code and Web is a utility designed to create sprite sheets.  Like ShoeBox above it is not an image creation or modification application.  There is a free version but limits some advanced features.

 

DragonBones – Windows/Mac

Unique in this list, DragonBones is a 2D animation system that enables you to use bone based IK animation to control and animate 2D images.  It’s similar in function to Creature, Spriter and Spine but is completely free.  It comes with runtimes for playing your animations in various game engines.

 

OpenToonz – Windows/Mac

An open source implementation of Toonz, originally developed by Studio Ghibli and used to help make Princess Mononoke, is completely free to use.  Aimed primarily at film animations, Toonz has been used to create animation for games in the past.  Not an easy tool to master.

 

TileCraft – Windows/Mac/Linux – Open Source

TileCraft is a unique little tool for creating 2D sprites using a 3D workflow.  Essentially you add and subtract solid 3D shapes to create more complex 2D images.  It’s an interesting approach and is open source, but sadly hasn’t been updated in over a year.

 

3D

 

Blender – Most Platforms – Open Source

Blender is certainly the biggest 3D package available for free, it’s also open source and remarkably full featured.  Model, sculpt, animate, physics simulation, render and composite all using a single program.  There is a ton of power here, but also a huge learning curve.  Thankfully, I’ve got you covered with a pair of tutorial series.

 

Daz Studio – Windows/Mac

Daz Studio is a 3D package, focused heavily on characters.  It’s incredibly easy to use, is available for free, while they make money selling 3D models, outfits, etc.  It is similar in scope and functionality to another application called Poser, which is not available in a free form.  A warning however, they will spam the email address you register with.

 

Dilay – Windows/Linux – Open Source

Dilay is a free open source 3D sculpting tool in the same vein as Mudbox, Sculptris and ZBrush.  I featured Dilay in this video if you wish to learn more.

 

MagickaVoxel – Windows/Mac

MagickaVoxel is a free to use Voxel editor.  Voxels are an alternative to traditional polygon approach to models, essentially composing objects out of blocks in 3D space. Minecraft is the most famous Voxel based game, but there are plenty of other examples preceding Minecraft.

 

Mixamo/Mixamo Fuse – Windows

Mixamo is a gigantic animation data base, and set of tools for applying animations to 3D models.  Mixamo FUSE is a 3D character creator, using a video game like interface for making 3D character models.  It was purchased by Adobe and currently is available for completely free.  I reviewed Fuse before the Adobe acquisition if you want an idea of what you are getting.  This is perhaps the simplest way to create 3D character models and is certainly the easiest way to animate them.

 

PolyBrush – Windows

PolyBrush is a one of a kind 3D sketching app, enabling you to create complex organic 3D shapes using a sketching workflow.  There is a free version available with some limitations ( single layer, max 8 undo levels, cannot save brushes ) but it is perfectly functional.  I featured Polybrush in this video should you wish to learn more.

 

Sculptris – Windows/Mac

A free 3D sculpting tool from Pixologic, the makers of ZBrush.  It’s not actively developed anymore, but is a great introduction to sculpting and the results can be exported for use in other software such as Blender.  For more details you can watch our Scultpris feature in the GameDev Toolbox series.

 

Wings 3D – Most Platforms – Open Source

Wings is an excellent 3D modeling application built around the Winged Edge polygon.  It enables fast and fairly easy 3D model creation.  Development however appears to have stopped sadly.  In recent years the 3d modeling tools in Blender have also improved greatly, making Wings less and less valuable.

 


Audio

By far my weakest area of knowledge, the following are applications freely available and used to create and edit audio from sound effects to background music.

 

Audacity – Windows/Mac/Linux – Open Source

Audacity is the swiss army knife for recording, translating and modifying audio files.  Simply put you should stop everything and download this tool if you haven’t done so already.  Audacity was featured in the GameDev Toolbox series if you want more information.

 

SunVox – Various

SunVox is a class of program called a ModTracker and can be used to create music.  The interface is simply daunting, but the effects can be pretty amazing.  Runs on just about every platform created by man and possibly aliens.  Was featured in the GameDev Toolbox series as well.

 

ChipTone – Web

ChipTone is like a streamlined version of SunVox that runs in your browser.  Comes with several game focused samples and the ability to record your own.

 

Bfxr.net – Web

A web based sound fx generator.  Very easy to use, start with several default sounds ( explosion, laser, etc. ) then modify the generator to create exactly the effect you need, then download locally.  Dead simple.

 

FMod – Windows/Mac

FMod is perhaps the most used game middleware for AAA and A game titles.  While it’s commercial software, it’s free to use if make less than $100K USD a year. They also offer FMod.io that gives access to a gigantic library of sound effects for 99cents each.  There is a first look video of FMOD.io available here.

 

Podium Free – Windows

Podium is a surprisingly full featured free version of Podium.  Podium is a digital audio workstation (DAW) that enables you to create, record and edit audio and MIDI as well as hosting VST instruments and effect plugins.

 


 

Code

 

This is where the various programming languages and development tools are listed.  Just a few years ago many of these products cost many hundred or thousands of dollars.  These days most programming tools are made available for basically free.  This features only the languages and tools most commonly used in game development.  There are dozens of programming languages and literally hundreds of tools, so a line in the sand must be made.

 

Please note, you often don’t require a programming language at all, at least not a stand alone one.  It’s increasingly common for many game engines to include the entire tool-chain for you, basically hiding this layer from you.  Additionally, some may find using an IDE as way too heavy.  Don’t worry however, you can also work entirely from the command line or terminal and use a lighter weight code editor should you prefer.

 

Languages and IDEs

 

Visual Studio Community – Windows

Visual Studio Community is perhaps the most used IDE (Integrated Developer Environment) in the world of both Windows development and game development in general.  It includes several programming language, but C++, JavaScript and C# are the most commonly used for game development (VB.Net, F# and TypeScript are also supported).  It also contains editors, debuggers, source control and much more.  In fact it contains so much more it’s actually rather bloated at this point, resulting in an install size north of 10GB.  Visual Studio Community is a revenue/team size limited version of the full Visual Studio package.  It’s essentially the same product and for individuals there is no limitation, for organizations there is a team size limit of 5 developers and $1M USD in revenue.  For Enterprise organizations, usage is not permitted.  You can read the full license details here.

One recent change with Visual Studio is Microsoft recently acquired Xamarin, and made it’s suite of products available free as part of Visual Studio Community.  This now gives you the ability to target iOS and Android using Visual Studio and C#. 

 

XCode – MacOS

XCode is the Apple equivalent of Visual Studio and is a requirement to sign and package iOS applications.  It can be used to develop for the various Apple platforms ( OS X, iOS, AppleTV, etc. ) with the primarily languages being Objective C and now Swift.  C++ is also fully supported, but is treated like a bit of a red headed stepchild for some unfathomable reason.  Like Visual Studio it contains a full set of development tools including code editors, an integrated debugger, forms designers and more.  XCode used to require a developer subscription with Apple but this requirement and fee has now been removed.  On a personal note, I’d rather use my forehead as a hammer than use XCode, but that’s just me.

 

GNU Tool Chain – Various – Open Source

GCC, or the GNU compiler collection, is a set of open source developer tools including support for just about every single language you’ve ever dreamed of using.  If you are developing on Linux, chances are you already have much of the GNU toolchain installed.  One caveat of the GNU suite is the GPL or Gnu Public License.  This open source license greatly restricts what you can do with the software, basically requiring you to make all changes and modifications to the code open and available.  Don’t worry, this restriction only applies to changes to tools themselves, not code you compile using them.  As mentioned earlier, GCC is generally included with any Linux distribution.  There are also ports to various platforms such as MingW for Windows or MacPorts on Windows.  Keep in mind GCC is NOT an ide, it’s the underlying compiler/linker/debugger.  Generally some form of editor is required as well.

 

LLVM(Clang) – Various – Open Source

LLVM, which isn’t actually an acronym no matter what other people tell you, is a suite of tools very similar to GCC.  It is instead released under the much more liberal BSD license and is the underyling technology behind a lot of commercial tools as a result, including XCode mentioned earlier, as well as closed development kits, such as the PlayStation 4.  An LLVM implementation is available as part of the MingW port, while it can also be used directly inside Visual Studio.  Like GCC, this is a lower level suite of tools and generally still requires an editor for code creation.

 

Qt Creator – Windows/Mac/Linux

Qt Creator is a full cross platform IDE primarily for C++ programming.  It’s has several tools designed to work with the Qt cross platform UI toolkit, but can be used as a standalone C++ development environment.  It includes a code editor, debugger, project management tools, UI designers, etc just like VS and XCode.

 

JetBrain’s Suite Of Products – Most Platforms

Instead of listing each product individually, it’s probably easier to mention the entire suite.  Most of the IDEs made by JetBrain offer a free version that is generally enough for most developers needs.  Perhaps their most known product is IntelliJ IDEA a Java IDE that has plugin support for dozens of programming languages.  They also have C#, C++, HTML/JavaScript, Python, etc. IDEs available as well.  

 

Eclipse – Most Platforms

Primarily a Java IDE, plugins have extended it’s functionality to support several other languages.  Full suite of tools and used to be the preferred development path for Android development (it is no longer).  Eclipse has everything and the kitchen sink.  Personally I’d rather code using morse code then use Eclipse again, but I figured I’d mention it for completeness.

 

Netbeans – Most Platforms

Oracle’s Java IDE, but can add support for other languages via plugins.  Again full featured, but certainly enterprise focused.  I’d prefer it to Eclipse, but then, I’d prefer just about anything to Eclipse.

 

Other Languages of Note:

 

Special Note for Android Developers

Android is a bit of a special case for development.  While based on Java, it’s not technically using Java (it’s a long story and got Google sued).  So long and short of it, there are special tools for Android development, specifically the Android SDK(Java) and the Android NDK(C++).  Google also make an IDE called Android Studio available, a port of the IntelliJ IDE, specifically for IDE development.

 

Editors

The following are code oriented text editors.  Don’t want the heavy install of a full IDE, are using a game engine that doesn’t include it’s own editor (or it’s built in editor sucks?), then you will probably want one of these.  Each of the following generally offer most of the following: multiple language support, plugin extensibility, syntax highlighting, refactoring tools and more.  Choosing the right editor is a deeply personal experience... Im not going to start any wars here... just list the options available... you pick your favorite.

And just so I don’t fend the old timers...

Just be aware of the learning curve, you will need to memorize about a hundred character combinations to become proficient with either of these editors.  That said, once you’ve got them down they can be exceedingly efficient.  It’s worth noting however the VI and Emacs keyboard bindings are often available in other editors.  A quick note here, Visual Studio Code and Visual Studio Community have NOTHING in common.  Code is a light weight cross platform editor, not a Windows only IDE.

 


 

Tools and Misc

Didn’t fit somewhere else but is available for free?  It goes here.

 

Tiled – Windows/Linux/Mac – Open Source

The preeminent free 2D map editing software package.  The map files Tiled generates are supported by just about every game engine available.  We have a full Tiled tutorial series available if you wish to learn more.

 

FreeMind – Various – Open Source

Freemind is an open source mind mapping package.  If you’ve never used one before, this is a great way to get ideas from your head to your computer.  There are actually a massive number of mind mapping packages available, FreeMind just happens to be the one I’m most familiar with.

 

ShaderToy – Web

GPU Shaders are becoming more and more critical to the world of game development and ShaderToy is perhaps the primary place to share and download shaders on the web.  You can also modify the shader source and see the results in real time.  Almost 12,000 shaders currently exist in the collection and growing daily.

 

FreeSound.org – Web

A huge collection of free audio files.

 

OpenGameArt.org – Web

A massive collection of free game graphics.

 

VST4Free.org – Web

A resource for VST instruments and effects.  VST stands for Virtual Studio Technology an enables you to encode samples of actual instruments, special sound effects etc. and use them in VST compatible instruments and software such as Podium mentioned earlier.

 


Game Engines

This is a section that could fill a few hundred pages and only just get started.  The reality is, almost every single game engine is available in a free form with differing business models.  Some such as Unreal Engine take a percentage of your revenue after certain thresholds are exceeded.  Others like Unity offer a free tier which has limitations, such as a maximum annual revenue, and require a subscription if you exceed those amounts.  There are also game engines like Godot, Urho, Atomic and Panda that are completely free and open source.  Then there are all the various frameworks such as SFML, LibGDX, SDL, Love, etc. many of which are open source and freely available.

 

This topic is well beyond this guide’s ability to cover.  Thankfully I’ve slowly been reviewing many of these engines and frameworks as part of the Closer Look series.

 


The Video

 

Design, Art, General, Programming , ,

23. July 2016

 

Khronos Group, the organizational body behind OpenAL, OpenCV, OpenGL and it’s successor Vulkan, have just released Vulkan-hpp on Github.

Khronos introduces Vulkan Hpp, an open source Vulkan C++ API. Vulkan is a C API and as such inherits all common pitfalls of using a general C programming library. The motivation of a low-level Vulkan C++ API is to avoid these common pitfalls by applying commonly known C++ features while keeping the overall structure of a Vulkan program and preserving the full freedom it provides as low-level graphics API

 

As the description says, it’s a C++ API over top of the C based Khronos API.  The design goal is to add no additional overhead over using the C API, implemented entirely using header files.  Some of the headline features are:

  • Type-safe enums
  • Improvements to Bit Flags
  • String Conversions
  • Alternative Initialization of Structs
  • Enhancements beyond native Vulkan
  • Exceptions and Returns Types

 

There are a collection of C Vulkan examples ported to the new C++ wrapper available here.

 

To get started with Vulkan-Hpp:

  • Clone the repository: git clone https://github.com/KhronosGroup/vkcpp
  • Update submodules: git submodule update --init --recursive
  • Use CMake to generate a solution or makefile for your favourite build environment
  • Launch the build

 

Vuklan-Hpp is available for download on Github here.

GameDev News

Month List

Popular Comments